Abstract:Despite the retrieval effectiveness of queries being mutually independent of one another, the evaluation of query performance prediction (QPP) systems has been carried out by measuring rank correlation over an entire set of queries. Such a listwise approach has a number of disadvantages, notably that it does not support the common requirement of assessing QPP for individual queries. In this paper, we propose a pointwise QPP framework that allows us to evaluate the quality of a QPP system for individual queries by measuring the deviations between each prediction versus the corresponding true value, and then aggregating the results over a set of queries. Our experiments demonstrate that this new approach leads to smaller variances in QPP evaluations across a range of different target metrics and retrieval models.
Abstract:Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
Abstract:Motivated by the recent success of end-to-end deep neural models for ranking tasks, we present here a supervised end-to-end neural approach for query performance prediction (QPP). In contrast to unsupervised approaches that rely on various statistics of document score distributions, our approach is entirely data-driven. Further, in contrast to weakly supervised approaches, our method also does not rely on the outputs from different QPP estimators. In particular, our model leverages information from the semantic interactions between the terms of a query and those in the top-documents retrieved with it. The architecture of the model comprises multiple layers of 2D convolution filters followed by a feed-forward layer of parameters. Experiments on standard test collections demonstrate that our proposed supervised approach outperforms other state-of-the-art supervised and unsupervised approaches.
Abstract:A query performance predictor estimates the retrieval effectiveness of an IR system for a given query. An important characteristic of QPP evaluation is that, since the ground truth retrieval effectiveness for QPP evaluation can be measured with different metrics, the ground truth itself is not absolute, which is in contrast to other retrieval tasks, such as that of ad-hoc retrieval. Motivated by this argument, the objective of this paper is to investigate how such variances in the ground truth for QPP evaluation can affect the outcomes of QPP experiments. We consider this not only in terms of the absolute values of the evaluation metrics being reported (e.g. Pearson's $r$, Kendall's $\tau$), but also with respect to the changes in the ranks of different QPP systems when ordered by the QPP metric scores. Our experiments reveal that the observed QPP outcomes can vary considerably, both in terms of the absolute evaluation metric values and also in terms of the relative system ranks. Through our analysis, we report the optimal combinations of QPP evaluation metric and experimental settings that are likely to lead to smaller variations in the observed results.
Abstract:A substantial amount of research has been carried out in developing machine learning algorithms that account for term dependence in text classification. These algorithms offer acceptable performance in most cases but they are associated with a substantial cost. They require significantly greater resources to operate. This paper argues against the justification of the higher costs of these algorithms, based on their performance in text classification problems. In order to prove the conjecture, the performance of one of the best dependence models is compared to several well established algorithms in text classification. A very specific collection of datasets have been designed, which would best reflect the disparity in the nature of text data, that are present in real world applications. The results show that even one of the best term dependence models, performs decent at best when compared to other independence models. Coupled with their substantially greater requirement for hardware resources for operation, this makes them an impractical choice for being used in real world scenarios.