Abstract:A supervised ranking model, despite its advantage of being effective, usually involves complex processing - typically multiple stages of task-specific pre-training and fine-tuning. This has motivated researchers to explore simpler pipelines leveraging large language models (LLMs) that are capable of working in a zero-shot manner. However, since zero-shot inference does not make use of a training set of pairs of queries and their relevant documents, its performance is mostly worse than that of supervised models, which are trained on such example pairs. Motivated by the existing findings that training examples generally improve zero-shot performance, in our work, we explore if this also applies to ranking models. More specifically, given a query and a pair of documents, the preference prediction task is improved by augmenting examples of preferences for similar queries from a training set. Our proposed pairwise few-shot ranker demonstrates consistent improvements over the zero-shot baseline on both in-domain (TREC DL) and out-domain (BEIR subset) retrieval benchmarks. Our method also achieves a close performance to that of a supervised model without requiring any complex training pipeline.
Abstract:In recent years, there has been a surge in the publication of clinical trial reports, making it challenging to conduct systematic reviews. Automatically extracting Population, Intervention, Comparator, and Outcome (PICO) from clinical trial studies can alleviate the traditionally time-consuming process of manually scrutinizing systematic reviews. Existing approaches of PICO frame extraction involves supervised approach that relies on the existence of manually annotated data points in the form of BIO label tagging. Recent approaches, such as In-Context Learning (ICL), which has been shown to be effective for a number of downstream NLP tasks, require the use of labeled examples. In this work, we adopt ICL strategy by employing the pretrained knowledge of Large Language Models (LLMs), gathered during the pretraining phase of an LLM, to automatically extract the PICO-related terminologies from clinical trial documents in unsupervised set up to bypass the availability of large number of annotated data instances. Additionally, to showcase the highest effectiveness of LLM in oracle scenario where large number of annotated samples are available, we adopt the instruction tuning strategy by employing Low Rank Adaptation (LORA) to conduct the training of gigantic model in low resource environment for the PICO frame extraction task. Our empirical results show that our proposed ICL-based framework produces comparable results on all the version of EBM-NLP datasets and the proposed instruction tuned version of our framework produces state-of-the-art results on all the different EBM-NLP datasets. Our project is available at \url{https://github.com/shrimonmuke0202/AlpaPICO.git}.
Abstract:Large Language Models (LLMs) have significantly impacted many facets of natural language processing and information retrieval. Unlike previous encoder-based approaches, the enlarged context window of these generative models allows for ranking multiple documents at once, commonly called list-wise ranking. However, there are still limits to the number of documents that can be ranked in a single inference of the model, leading to the broad adoption of a sliding window approach to identify the k most relevant items in a ranked list. We argue that the sliding window approach is not well-suited for list-wise re-ranking because it (1) cannot be parallelized in its current form, (2) leads to redundant computational steps repeatedly re-scoring the best set of documents as it works its way up the initial ranking, and (3) prioritizes the lowest-ranked documents for scoring rather than the highest-ranked documents by taking a bottom-up approach. Motivated by these shortcomings and an initial study that shows list-wise rankers are biased towards relevant documents at the start of their context window, we propose a novel algorithm that partitions a ranking to depth k and processes documents top-down. Unlike sliding window approaches, our algorithm is inherently parallelizable due to the use of a pivot element, which can be compared to documents down to an arbitrary depth concurrently. In doing so, we reduce the number of expected inference calls by around 33% when ranking at depth 100 while matching the performance of prior approaches across multiple strong re-rankers.
Abstract:With the increasing ability of large language models (LLMs), in-context learning (ICL) has evolved as a new paradigm for natural language processing (NLP), where instead of fine-tuning the parameters of an LLM specific to a downstream task with labeled examples, a small number of such examples is appended to a prompt instruction for controlling the decoder's generation process. ICL, thus, is conceptually similar to a non-parametric approach, such as $k$-NN, where the prediction for each instance essentially depends on the local topology, i.e., on a localised set of similar instances and their labels (called few-shot examples). This suggests that a test instance in ICL is analogous to a query in IR, and similar examples in ICL retrieved from a training set relate to a set of documents retrieved from a collection in IR. While standard unsupervised ranking models can be used to retrieve these few-shot examples from a training set, the effectiveness of the examples can potentially be improved by re-defining the notion of relevance specific to its utility for the downstream task, i.e., considering an example to be relevant if including it in the prompt instruction leads to a correct prediction. With this task-specific notion of relevance, it is possible to train a supervised ranking model (e.g., a bi-encoder or cross-encoder), which potentially learns to optimally select the few-shot examples. We believe that the recent advances in neural rankers can potentially find a use case for this task of optimally choosing examples for more effective downstream ICL predictions.
Abstract:In recent years, neural ranking models (NRMs) have been shown to substantially outperform their lexical counterparts in text retrieval. In traditional search pipelines, a combination of features leads to well-defined behaviour. However, as neural approaches become increasingly prevalent as the final scoring component of engines or as standalone systems, their robustness to malicious text and, more generally, semantic perturbation needs to be better understood. We posit that the transformer attention mechanism can induce exploitable defects through positional bias in search models, leading to an attack that could generalise beyond a single query or topic. We demonstrate such defects by showing that non-relevant text--such as promotional content--can be easily injected into a document without adversely affecting its position in search results. Unlike previous gradient-based attacks, we demonstrate these biases in a query-agnostic fashion. In doing so, without the knowledge of topicality, we can still reduce the negative effects of non-relevant content injection by controlling injection position. Our experiments are conducted with simulated on-topic promotional text automatically generated by prompting LLMs with topical context from target documents. We find that contextualisation of a non-relevant text further reduces negative effects whilst likely circumventing existing content filtering mechanisms. In contrast, lexical models are found to be more resilient to such content injection attacks. We then investigate a simple yet effective compensation for the weaknesses of the NRMs in search, validating our hypotheses regarding transformer bias.
Abstract:Predictive models in natural language processing (NLP) have evolved from training models from scratch to fine-tuning pre-trained models with labelled data. An extreme form of this fine-tuning involves in-context learning (ICL), where the output of a pre-trained generative model (frozen decoder parameters) is controlled only with variations in the input strings (called instructions or prompts). An important component of ICL is the use of a small number of labelled data instances as examples in the prompt. While existing work uses a static number of examples during inference for each data instance, in this paper we propose a novel methodology of dynamically adapting the number of examples as per the data. This is analogous to the use of a variable-sized neighborhood in k-nearest neighbors (k-NN) classifier. In our proposed workflow of adaptive ICL (AICL), the number of demonstrations to employ during the inference on a particular data instance is predicted by the Softmax posteriors of a classifier. The parameters of this classifier are fitted on the optimal number of examples in ICL required to correctly infer the label of each instance in the training set with the hypothesis that a test instance that is similar to a training instance should use the same (or a closely matching) number of few-shot examples. Our experiments show that our AICL method results in improvement in text classification task on several standard datasets.
Abstract:Information retrieval models have witnessed a paradigm shift from unsupervised statistical approaches to feature-based supervised approaches to completely data-driven ones that make use of the pre-training of large language models. While the increasing complexity of the search models have been able to demonstrate improvements in effectiveness (measured in terms of relevance of top-retrieved results), a question worthy of a thorough inspection is - "how explainable are these models?", which is what this paper aims to evaluate. In particular, we propose a common evaluation platform to systematically evaluate the explainability of any ranking model (the explanation algorithm being identical for all the models that are to be evaluated). In our proposed framework, each model, in addition to returning a ranked list of documents, also requires to return a list of explanation units or rationales for each document. This meta-information from each document is then used to measure how locally consistent these rationales are as an intrinsic measure of interpretability - one that does not require manual relevance assessments. Additionally, as an extrinsic measure, we compute how relevant these rationales are by leveraging sub-document level relevance assessments. Our findings show a number of interesting observations, such as sentence-level rationales are more consistent, an increase in complexity mostly leads to less consistent explanations, and that interpretability measures offer a complementary dimension of evaluation of IR systems because consistency is not well-correlated with nDCG at top ranks.
Abstract:Pseudo-relevance feedback (PRF) can enhance average retrieval effectiveness over a sufficiently large number of queries. However, PRF often introduces a drift into the original information need, thus hurting the retrieval effectiveness of several queries. While a selective application of PRF can potentially alleviate this issue, previous approaches have largely relied on unsupervised or feature-based learning to determine whether a query should be expanded. In contrast, we revisit the problem of selective PRF from a deep learning perspective, presenting a model that is entirely data-driven and trained in an end-to-end manner. The proposed model leverages a transformer-based bi-encoder architecture. Additionally, to further improve retrieval effectiveness with this selective PRF approach, we make use of the model's confidence estimates to combine the information from the original and expanded queries. In our experiments, we apply this selective feedback on a number of different combinations of ranking and feedback models, and show that our proposed approach consistently improves retrieval effectiveness for both sparse and dense ranking models, with the feedback models being either sparse, dense or generative.
Abstract:The recent success in language generation capabilities of large language models (LLMs), such as GPT, Bard, Llama etc., can potentially lead to concerns about their possible misuse in inducing mass agitation and communal hatred via generating fake news and spreading misinformation. Traditional means of developing a misinformation ground-truth dataset does not scale well because of the extensive manual effort required to annotate the data. In this paper, we propose an LLM-based approach of creating silver-standard ground-truth datasets for identifying misinformation. Specifically speaking, given a trusted news article, our proposed approach involves prompting LLMs to automatically generate a summarised version of the original article. The prompts in our proposed approach act as a controlling mechanism to generate specific types of factual incorrectness in the generated summaries, e.g., incorrect quantities, false attributions etc. To investigate the usefulness of this dataset, we conduct a set of experiments where we train a range of supervised models for the task of misinformation detection.
Abstract:Research in scientific disciplines evolves, often rapidly, over time with the emergence of novel methodologies and their associated terminologies. While methodologies themselves being conceptual in nature and rather difficult to automatically extract and characterise, in this paper, we seek to develop supervised models for automatic extraction of the names of the various constituents of a methodology, e.g., `R-CNN', `ELMo' etc. The main research challenge for this task is effectively modeling the contexts around these methodology component names in a few-shot or even a zero-shot setting. The main contributions of this paper towards effectively identifying new evolving scientific methodology names are as follows: i) we propose a factored approach to sequence modeling, which leverages a broad-level category information of methodology domains, e.g., `NLP', `RL' etc.; ii) to demonstrate the feasibility of our proposed approach of identifying methodology component names under a practical setting of fast evolving AI literature, we conduct experiments following a simulated chronological setup (newer methodologies not seen during the training process); iii) our experiments demonstrate that the factored approach outperforms state-of-the-art baselines by margins of up to 9.257\% for the methodology extraction task with the few-shot setup.