Abstract:Most conventional Retrieval-Augmented Generation (RAG) pipelines rely on relevance-based retrieval, which often misaligns with utility -- that is, whether the retrieved passages actually improve the quality of the generated text specific to a downstream task such as question answering or query-based summarization. The limitations of existing utility-driven retrieval approaches for RAG are that, firstly, they are resource-intensive typically requiring query encoding, and that secondly, they do not involve listwise ranking loss during training. The latter limitation is particularly critical, as the relative order between documents directly affects generation in RAG. To address this gap, we propose Lightweight Utility-driven Reranking for Efficient RAG (LURE-RAG), a framework that augments any black-box retriever with an efficient LambdaMART-based reranker. Unlike prior methods, LURE-RAG trains the reranker with a listwise ranking loss guided by LLM utility, thereby directly optimizing the ordering of retrieved documents. Experiments on two standard datasets demonstrate that LURE-RAG achieves competitive performance, reaching 97-98% of the state-of-the-art dense neural baseline, while remaining efficient in both training and inference. Moreover, its dense variant, UR-RAG, significantly outperforms the best existing baseline by up to 3%.
Abstract:With the increasing ability of large language models (LLMs), in-context learning (ICL) has evolved as a new paradigm for natural language processing (NLP), where instead of fine-tuning the parameters of an LLM specific to a downstream task with labeled examples, a small number of such examples is appended to a prompt instruction for controlling the decoder's generation process. ICL, thus, is conceptually similar to a non-parametric approach, such as $k$-NN, where the prediction for each instance essentially depends on the local topology, i.e., on a localised set of similar instances and their labels (called few-shot examples). This suggests that a test instance in ICL is analogous to a query in IR, and similar examples in ICL retrieved from a training set relate to a set of documents retrieved from a collection in IR. While standard unsupervised ranking models can be used to retrieve these few-shot examples from a training set, the effectiveness of the examples can potentially be improved by re-defining the notion of relevance specific to its utility for the downstream task, i.e., considering an example to be relevant if including it in the prompt instruction leads to a correct prediction. With this task-specific notion of relevance, it is possible to train a supervised ranking model (e.g., a bi-encoder or cross-encoder), which potentially learns to optimally select the few-shot examples. We believe that the recent advances in neural rankers can potentially find a use case for this task of optimally choosing examples for more effective downstream ICL predictions.
Abstract:Predictive models in natural language processing (NLP) have evolved from training models from scratch to fine-tuning pre-trained models with labelled data. An extreme form of this fine-tuning involves in-context learning (ICL), where the output of a pre-trained generative model (frozen decoder parameters) is controlled only with variations in the input strings (called instructions or prompts). An important component of ICL is the use of a small number of labelled data instances as examples in the prompt. While existing work uses a static number of examples during inference for each data instance, in this paper we propose a novel methodology of dynamically adapting the number of examples as per the data. This is analogous to the use of a variable-sized neighborhood in k-nearest neighbors (k-NN) classifier. In our proposed workflow of adaptive ICL (AICL), the number of demonstrations to employ during the inference on a particular data instance is predicted by the Softmax posteriors of a classifier. The parameters of this classifier are fitted on the optimal number of examples in ICL required to correctly infer the label of each instance in the training set with the hypothesis that a test instance that is similar to a training instance should use the same (or a closely matching) number of few-shot examples. Our experiments show that our AICL method results in improvement in text classification task on several standard datasets.