Abstract:The recent success of large language models (LLMs) and the scaling law has led to a widespread adoption of larger models. Particularly in the healthcare industry, there is an increasing demand for locally operated LLMs due to security concerns. However, the majority of high quality open-source LLMs have a size of 70B parameters, imposing significant financial burdens on users for GPU preparation and operation. To overcome these issues, we present a medical adaptation based on the recent 7B models, which enables the operation in low computational resources. We compare the performance on medical question-answering benchmarks in two languages (Japanese and English), demonstrating that its scores reach parity with or surpass those of currently existing medical LLMs that are ten times larger. We find that fine-tuning an English-centric base model on Japanese medical dataset improves the score in both language, supporting the effect of cross-lingual knowledge transfer. We hope that this study will alleviate financial challenges, serving as a stepping stone for clinical institutions to practically utilize LLMs locally. Our evaluation code is available at https://huggingface.co/stardust-coder/jmedllm-7b-v1.
Abstract:Since the rise of large language models (LLMs), the domain adaptation has been one of the hot topics in various domains. Many medical LLMs trained with English medical dataset have made public recently. However, Japanese LLMs in medical domain still lack its research. Here we utilize multiple 70B-parameter LLMs for the first time and show that instruction tuning using Japanese medical question-answering dataset significantly improves the ability of Japanese LLMs to solve Japanese medical license exams, surpassing 50\% in accuracy. In particular, the Japanese-centric models exhibit a more significant leap in improvement through instruction tuning compared to their English-centric counterparts. This underscores the importance of continual pretraining and the adjustment of the tokenizer in our local language. We also examine two slightly different prompt formats, resulting in non-negligible performance improvement.
Abstract:In the ongoing wave of impact driven by large language models (LLMs) like ChatGPT, the adaptation of LLMs to medical domain has emerged as a crucial research frontier. Since mainstream LLMs tend to be designed for general-purpose applications, constructing a medical LLM through domain adaptation is a huge challenge. While instruction-tuning is used to fine-tune some LLMs, its precise roles in domain adaptation remain unknown. Here we show the contribution of LoRA-based instruction-tuning to performance in Japanese medical question-answering tasks. In doing so, we employ a multifaceted evaluation for multiple-choice questions, including scoring based on "Exact match" and "Gestalt distance" in addition to the conventional accuracy. Our findings suggest that LoRA-based instruction-tuning can partially incorporate domain-specific knowledge into LLMs, with larger models demonstrating more pronounced effects. Furthermore, our results underscore the potential of adapting English-centric models for Japanese applications in domain adaptation, while also highlighting the persisting limitations of Japanese-centric models. This initiative represents a pioneering effort in enabling medical institutions to fine-tune and operate models without relying on external services.