Abstract:In the real world, long-tailed data distributions are prevalent, making it challenging for models to effectively learn and classify tail classes. However, we discover that in the field of drug chemistry, certain tail classes exhibit higher identifiability during training due to their unique molecular structural features, a finding that significantly contrasts with the conventional understanding that tail classes are generally difficult to identify. Existing imbalance learning methods, such as resampling and cost-sensitive reweighting, overly rely on sample quantity priors, causing models to excessively focus on tail classes at the expense of head class performance. To address this issue, we propose a novel method that breaks away from the traditional static evaluation paradigm based on sample size. Instead, we establish a dynamical inter-class separability metric using feature distances between different classes. Specifically, we employ a sub-clustering contrastive learning approach to thoroughly learn the embedding features of each class, and we dynamically compute the distances between class embeddings to capture the relative positional evolution of samples from different classes in the feature space, thereby rebalancing the weights of the classification loss function. We conducted experiments on multiple existing long-tailed drug datasets and achieved competitive results by improving the accuracy of tail classes without compromising the performance of dominant classes.
Abstract:This paper introduces JiraiBench, the first bilingual benchmark for evaluating large language models' effectiveness in detecting self-destructive content across Chinese and Japanese social media communities. Focusing on the transnational "Jirai" (landmine) online subculture that encompasses multiple forms of self-destructive behaviors including drug overdose, eating disorders, and self-harm, we present a comprehensive evaluation framework incorporating both linguistic and cultural dimensions. Our dataset comprises 10,419 Chinese posts and 5,000 Japanese posts with multidimensional annotation along three behavioral categories, achieving substantial inter-annotator agreement. Experimental evaluations across four state-of-the-art models reveal significant performance variations based on instructional language, with Japanese prompts unexpectedly outperforming Chinese prompts when processing Chinese content. This emergent cross-cultural transfer suggests that cultural proximity can sometimes outweigh linguistic similarity in detection tasks. Cross-lingual transfer experiments with fine-tuned models further demonstrate the potential for knowledge transfer between these language systems without explicit target language training. These findings highlight the need for culturally-informed approaches to multilingual content moderation and provide empirical evidence for the importance of cultural context in developing more effective detection systems for vulnerable online communities.
Abstract:The advent of large language models (LLMs) has revolutionized online content creation, making it much easier to generate high-quality fake news. This misuse threatens the integrity of our digital environment and ethical standards. Therefore, understanding the motivations and mechanisms behind LLM-generated fake news is crucial. In this study, we analyze the creation of fake news from a social psychology perspective and develop a comprehensive LLM-based theoretical framework, LLM-Fake Theory. We introduce a novel pipeline that automates the generation of fake news using LLMs, thereby eliminating the need for manual annotation. Utilizing this pipeline, we create a theoretically informed Machine-generated Fake news dataset, MegaFake, derived from the GossipCop dataset. We conduct comprehensive analyses to evaluate our MegaFake dataset. We believe that our dataset and insights will provide valuable contributions to future research focused on the detection and governance of fake news in the era of LLMs.
Abstract:Ellipsometry is used to indirectly measure the optical properties and thickness of thin films. However, solving the inverse problem of ellipsometry is time-consuming since it involves human expertise to apply the data fitting techniques. Many studies use traditional machine learning-based methods to model the complex mathematical fitting process. In our work, we approach this problem from a deep learning perspective. First, we introduce a large-scale benchmark dataset to facilitate deep learning methods. The proposed dataset encompasses 98 types of thin film materials and 4 types of substrate materials, including metals, alloys, compounds, and polymers, among others. Additionally, we propose a deep learning framework that leverages residual connections and self-attention mechanisms to learn the massive data points. We also introduce a reconstruction loss to address the common challenge of multiple solutions in thin film thickness prediction. Compared to traditional machine learning methods, our framework achieves state-of-the-art (SOTA) performance on our proposed dataset. The dataset and code will be available upon acceptance.