Abstract:A key challenge in robotic manipulation in open domains is how to acquire diverse and generalizable skills for robots. Recent research in one-shot imitation learning has shown promise in transferring trained policies to new tasks based on demonstrations. This feature is attractive for enabling robots to acquire new skills and improving task and motion planning. However, due to limitations in the training dataset, the current focus of the community has mainly been on simple cases, such as push or pick-place tasks, relying solely on visual guidance. In reality, there are many complex skills, some of which may even require both visual and tactile perception to solve. This paper aims to unlock the potential for an agent to generalize to hundreds of real-world skills with multi-modal perception. To achieve this, we have collected a dataset comprising over 110,000 \emph{contact-rich} robot manipulation sequences across diverse skills, contexts, robots, and camera viewpoints, all collected \emph{in the real world}. Each sequence in the dataset includes visual, force, audio, and action information, along with a corresponding human demonstration video. We have invested significant efforts in calibrating all the sensors and ensuring a high-quality dataset. The dataset is made publicly available at rh20t.github.io
Abstract:Data-efficient learning has drawn significant attention, especially given the current trend of large multi-modal models, where dataset distillation can be an effective solution. However, the dataset distillation process itself is still very inefficient. In this work, we model the distillation problem with reference to information theory. Observing that severe data redundancy exists in dataset distillation, we argue to put more emphasis on the utility of the training samples. We propose a family of methods to exploit the most valuable samples, which is validated by our comprehensive analysis of the optimal data selection. The new strategy significantly reduces the training cost and extends a variety of existing distillation algorithms to larger and more diversified datasets, e.g. in some cases only 0.04% training data is sufficient for comparable distillation performance. Moreover, our strategy consistently enhances the performance, which may open up new analyses on the dynamics of distillation and networks. Our method is able to extend the distillation algorithms to much larger-scale datasets and more heterogeneous datasets, e.g. ImageNet-1K and Kinetics-400. Our code will be made publicly available.
Abstract:With the progress of 3D human pose and shape estimation, state-of-the-art methods can either be robust to occlusions or obtain pixel-aligned accuracy in non-occlusion cases. However, they cannot obtain robustness and mesh-image alignment at the same time. In this work, we present NIKI (Neural Inverse Kinematics with Invertible Neural Network), which models bi-directional errors to improve the robustness to occlusions and obtain pixel-aligned accuracy. NIKI can learn from both the forward and inverse processes with invertible networks. In the inverse process, the model separates the error from the plausible 3D pose manifold for a robust 3D human pose estimation. In the forward process, we enforce the zero-error boundary conditions to improve the sensitivity to reliable joint positions for better mesh-image alignment. Furthermore, NIKI emulates the analytical inverse kinematics algorithms with the twist-and-swing decomposition for better interpretability. Experiments on standard and occlusion-specific benchmarks demonstrate the effectiveness of NIKI, where we exhibit robust and well-aligned results simultaneously. Code is available at https://github.com/Jeff-sjtu/NIKI
Abstract:Recovering whole-body mesh by inferring the abstract pose and shape parameters from visual content can obtain 3D bodies with realistic structures. However, the inferring process is highly non-linear and suffers from image-mesh misalignment, resulting in inaccurate reconstruction. In contrast, 3D keypoint estimation methods utilize the volumetric representation to achieve pixel-level accuracy but may predict unrealistic body structures. To address these issues, this paper presents a novel hybrid inverse kinematics solution, HybrIK, that integrates the merits of 3D keypoint estimation and body mesh recovery in a unified framework. HybrIK directly transforms accurate 3D joints to body-part rotations via twist-and-swing decomposition. The swing rotations are analytically solved with 3D joints, while the twist rotations are derived from visual cues through neural networks. To capture comprehensive whole-body details, we further develop a holistic framework, HybrIK-X, which enhances HybrIK with articulated hands and an expressive face. HybrIK-X is fast and accurate by solving the whole-body pose with a one-stage model. Experiments demonstrate that HybrIK and HybrIK-X preserve both the accuracy of 3D joints and the realistic structure of the parametric human model, leading to pixel-aligned whole-body mesh recovery. The proposed method significantly surpasses the state-of-the-art methods on various benchmarks for body-only, hand-only, and whole-body scenarios. Code and results can be found at https://jeffli.site/HybrIK-X/
Abstract:Enable neural networks to capture 3D geometrical-aware features is essential in multi-view based vision tasks. Previous methods usually encode the 3D information of multi-view stereo into the 2D features. In contrast, we present a novel method, named POEM, that directly operates on the 3D POints Embedded in the Multi-view stereo for reconstructing hand mesh in it. Point is a natural form of 3D information and an ideal medium for fusing features across views, as it has different projections on different views. Our method is thus in light of a simple yet effective idea, that a complex 3D hand mesh can be represented by a set of 3D points that 1) are embedded in the multi-view stereo, 2) carry features from the multi-view images, and 3) encircle the hand. To leverage the power of points, we design two operations: point-based feature fusion and cross-set point attention mechanism. Evaluation on three challenging multi-view datasets shows that POEM outperforms the state-of-the-art in hand mesh reconstruction. Code and models are available for research at https://github.com/lixiny/POEM.
Abstract:Action understanding matters and attracts attention. It can be formed as the mapping from the action physical space to the semantic space. Typically, researchers built action datasets according to idiosyncratic choices to define classes and push the envelope of benchmarks respectively. Thus, datasets are incompatible with each other like "Isolated Islands" due to semantic gaps and various class granularities, e.g., do housework in dataset A and wash plate in dataset B. We argue that a more principled semantic space is an urgent need to concentrate the community efforts and enable us to use all datasets together to pursue generalizable action learning. To this end, we design a Poincare action semantic space given verb taxonomy hierarchy and covering massive actions. By aligning the classes of previous datasets to our semantic space, we gather (image/video/skeleton/MoCap) datasets into a unified database in a unified label system, i.e., bridging "isolated islands" into a "Pangea". Accordingly, we propose a bidirectional mapping model between physical and semantic space to fully use Pangea. In extensive experiments, our system shows significant superiority, especially in transfer learning. Code and data will be made publicly available.
Abstract:Tactile sensing is one of the modalities humans rely on heavily to perceive the world. Working with vision, this modality refines local geometry structure, measures deformation at the contact area, and indicates the hand-object contact state. With the availability of open-source tactile sensors such as DIGIT, research on visual-tactile learning is becoming more accessible and reproducible. Leveraging this tactile sensor, we propose a novel visual-tactile in-hand object reconstruction framework \textbf{VTacO}, and extend it to \textbf{VTacOH} for hand-object reconstruction. Since our method can support both rigid and deformable object reconstruction, no existing benchmarks are proper for the goal. We propose a simulation environment, VT-Sim, which supports generating hand-object interaction for both rigid and deformable objects. With VT-Sim, we generate a large-scale training dataset and evaluate our method on it. Extensive experiments demonstrate that our proposed method can outperform the previous baseline methods qualitatively and quantitatively. Finally, we directly apply our model trained in simulation to various real-world test cases, which display qualitative results. Codes, models, simulation environment, and datasets are available at \url{https://sites.google.com/view/vtaco/}.
Abstract:Garments are important to humans. A visual system that can estimate and track the complete garment pose can be useful for many downstream tasks and real-world applications. In this work, we present a complete package to address the category-level garment pose tracking task: (1) A recording system VR-Garment, with which users can manipulate virtual garment models in simulation through a VR interface. (2) A large-scale dataset VR-Folding, with complex garment pose configurations in manipulation like flattening and folding. (3) An end-to-end online tracking framework GarmentTracking, which predicts complete garment pose both in canonical space and task space given a point cloud sequence. Extensive experiments demonstrate that the proposed GarmentTracking achieves great performance even when the garment has large non-rigid deformation. It outperforms the baseline approach on both speed and accuracy. We hope our proposed solution can serve as a platform for future research. Codes and datasets are available in https://garment-tracking.robotflow.ai.
Abstract:Deep neural networks (DNNs) often perform poorly in the presence of domain shift and category shift. How to upcycle DNNs and adapt them to the target task remains an important open problem. Unsupervised Domain Adaptation (UDA), especially recently proposed Source-free Domain Adaptation (SFDA), has become a promising technology to address this issue. Nevertheless, existing SFDA methods require that the source domain and target domain share the same label space, consequently being only applicable to the vanilla closed-set setting. In this paper, we take one step further and explore the Source-free Universal Domain Adaptation (SF-UniDA). The goal is to identify "known" data samples under both domain and category shift, and reject those "unknown" data samples (not present in source classes), with only the knowledge from standard pre-trained source model. To this end, we introduce an innovative global and local clustering learning technique (GLC). Specifically, we design a novel, adaptive one-vs-all global clustering algorithm to achieve the distinction across different target classes and introduce a local k-NN clustering strategy to alleviate negative transfer. We examine the superiority of our GLC on multiple benchmarks with different category shift scenarios, including partial-set, open-set, and open-partial-set DA. Remarkably, in the most challenging open-partial-set DA scenario, GLC outperforms UMAD by 14.8\% on the VisDA benchmark. The code is available at https://github.com/ispc-lab/GLC.
Abstract:Various recent methods attempt to implement rotation-invariant 3D deep learning by replacing the input coordinates of points with relative distances and angles. Due to the incompleteness of these low-level features, they have to undertake the expense of losing global information. In this paper, we propose the CRIN, namely Centrifugal Rotation-Invariant Network. CRIN directly takes the coordinates of points as input and transforms local points into rotation-invariant representations via centrifugal reference frames. Aided by centrifugal reference frames, each point corresponds to a discrete rotation so that the information of rotations can be implicitly stored in point features. Unfortunately, discrete points are far from describing the whole rotation space. We further introduce a continuous distribution for 3D rotations based on points. Furthermore, we propose an attention-based down-sampling strategy to sample points invariant to rotations. A relation module is adopted at last for reinforcing the long-range dependencies between sampled points and predicts the anchor point for unsupervised rotation estimation. Extensive experiments show that our method achieves rotation invariance, accurately estimates the object rotation, and obtains state-of-the-art results on rotation-augmented classification and part segmentation. Ablation studies validate the effectiveness of the network design.