Voice conversion is the process of converting the voice of one speaker into the voice of another speaker.
Full-duplex voice interaction is crucial for natural human computer interaction. We present a framework that decomposes complex dialogue into minimal conversational units, enabling the system to process each unit independently and predict when to transit to the next. This framework is instantiated as a semi-cascaded full-duplex dialogue system built around a multimodal large language model, supported by auxiliary modules such as voice activity detection (VAD) and text-to-speech (TTS) synthesis. The resulting system operates in a train-free, plug-and-play manner. Experiments on the HumDial dataset demonstrate the effectiveness of our framework, which ranks second among all teams on the test set of the Human-like Spoken Dialogue Systems Challenge (Track 2: Full-Duplex Interaction). Code is available at the GitHub repository https://github.com/yu-haoyuan/fd-badcat.
An increasing number of LLM-based applications are being developed to facilitate romantic relationships with AI partners, yet the safety and privacy risks in these partnerships remain largely underexplored. In this work, we investigate privacy in human-AI romantic relationships through an interview study (N=17), examining participants' experiences and privacy perceptions across stages of exploration, intimacy, and dissolution, alongside platforms they used. We found that these relationships took varied forms, from one-to-one to one-to-many, and were shaped by multiple actors, including creators, platforms, and moderators. AI partners were perceived as having agency, actively negotiating privacy boundaries with participants and sometimes encouraging disclosure of personal details. As intimacy deepened, these boundaries became more permeable, though some participants voiced concerns such as conversation exposure and sought to preserve anonymity. Overall, platform affordances and diverse romantic dynamics expand the privacy landscape, underscoring the need to rethink how privacy is constructed in human-AI intimacy.
Real-time voice agents face a dilemma: end-to-end models often lack deep reasoning, while cascaded pipelines incur high latency by executing ASR, LLM reasoning, and TTS strictly in sequence, unlike human conversation where listeners often start thinking before the speaker finishes. Since cascaded architectures remain the dominant choice for complex tasks, existing cascaded streaming strategies attempt to reduce this latency via mechanical segmentation (e.g., fixed chunks, VAD-based splitting) or speculative generation, but they frequently either break semantic units or waste computation on predictions that must be rolled back. To address these challenges, we propose LTS-VoiceAgent, a Listen-Think-Speak framework that explicitly separates when to think from how to reason incrementally. It features a Dynamic Semantic Trigger to detect meaningful prefixes, and a Dual-Role Stream Orchestrator that coordinates a background Thinker (for state maintenance) and a foreground Speaker (for speculative solving). This parallel design enables "thinking while speaking" without blocking responses. We also introduce a Pause-and-Repair benchmark containing natural disfluencies to stress-test streaming robustness. Experiments across VERA, Spoken-MQA, BigBenchAudio, and our benchmark show that LTS-VoiceAgent achieves a stronger accuracy-latency-efficiency trade-off than serial cascaded baselines and existing streaming strategies.
We present S$^2$Voice, the winning system of the Singing Voice Conversion Challenge (SVCC) 2025 for both the in-domain and zero-shot singing style conversion tracks. Built on the strong two-stage Vevo baseline, S$^2$Voice advances style control and robustness through several contributions. First, we integrate style embeddings into the autoregressive large language model (AR LLM) via a FiLM-style layer-norm conditioning and a style-aware cross-attention for enhanced fine-grained style modeling. Second, we introduce a global speaker embedding into the flow-matching transformer to improve timbre similarity. Third, we curate a large, high-quality singing corpus via an automated pipeline for web harvesting, vocal separation, and transcript refinement. Finally, we employ a multi-stage training strategy combining supervised fine-tuning (SFT) and direct preference optimization (DPO). Subjective listening tests confirm our system's superior performance: leading in style similarity and singer similarity for Task 1, and across naturalness, style similarity, and singer similarity for Task 2. Ablation studies demonstrate the effectiveness of our contributions in enhancing style fidelity, timbre preservation, and generalization. Audio samples are available~\footnote{https://honee-w.github.io/SVC-Challenge-Demo/}.
Protecting speaker identity is crucial for online voice applications, yet streaming speaker anonymization (SA) remains underexplored. Recent research has demonstrated that neural audio codec (NAC) provides superior speaker feature disentanglement and linguistic fidelity. NAC can also be used with causal language models (LM) to enhance linguistic fidelity and prompt control for streaming tasks. However, existing NAC-based online LM systems are designed for voice conversion (VC) rather than anonymization, lacking the techniques required for privacy protection. Building on these advances, we present Stream-Voice-Anon, which adapts modern causal LM-based NAC architectures specifically for streaming SA by integrating anonymization techniques. Our anonymization approach incorporates pseudo-speaker representation sampling, a speaker embedding mixing and diverse prompt selection strategies for LM conditioning that leverage the disentanglement properties of quantized content codes to prevent speaker information leakage. Additionally, we compare dynamic and fixed delay configurations to explore latency-privacy trade-offs in real-time scenarios. Under the VoicePrivacy 2024 Challenge protocol, Stream-Voice-Anon achieves substantial improvements in intelligibility (up to 46% relative WER reduction) and emotion preservation (up to 28% UAR relative) compared to the previous state-of-the-art streaming method DarkStream while maintaining comparable latency (180ms vs 200ms) and privacy protection against lazy-informed attackers, though showing 15% relative degradation against semi-informed attackers.
Driver distraction remains a leading contributor to motor vehicle crashes, necessitating rigorous evaluation of new in-vehicle technologies. This study assessed the visual and cognitive demands associated with an advanced Large Language Model (LLM) conversational agent (Gemini Live) during on-road driving, comparing it against handsfree phone calls, visual turn-by-turn guidance (low load baseline), and the Operation Span (OSPAN) task (high load anchor). Thirty-two licensed drivers completed five secondary tasks while visual and cognitive demands were measured using the Detection Response Task (DRT) for cognitive load, eye-tracking for visual attention, and subjective workload ratings. Results indicated that Gemini Live interactions (both single-turn and multi-turn) and hands-free phone calls shared similar levels of cognitive load, between that of visual turn-by-turn guidance and OSPAN. Exploratory analysis showed that cognitive load remained stable across extended multi-turn conversations. All tasks maintained mean glance durations well below the well-established 2-second safety threshold, confirming low visual demand. Furthermore, drivers consistently dedicated longer glances to the roadway between brief off-road glances toward the device during task completion, particularly during voice-based interactions, rendering longer total-eyes-off-road time findings less consequential. Subjective ratings mirrored objective data, with participants reporting low effort, demands, and perceived distraction for Gemini Live. These findings demonstrate that advanced LLM conversational agents, when implemented via voice interfaces, impose cognitive and visual demands comparable to established, low-risk hands-free benchmarks, supporting their safe deployment in the driving environment.
Spoken conversational systems require more than accurate speech generation to have human-like conversations: to feel natural and engaging, they must produce conversational behaviour that adapts dynamically to the context. Current spoken conversational systems, however, rarely allow such customization, limiting their naturalness and usability. In this work, we present the first open, instruction-following full-duplex conversational speech model that can be trained efficiently under typical academic resource constraints. By keeping the audio encoder frozen and finetuning only the language model, our model requires just 2,000 hours of data, without relying on large-scale pretraining or multi-stage optimization. The model can follow explicit instructions to control speaker voice, conversation topic, conversational behaviour (e.g., backchanneling and interruptions), and dialogue initiation. We propose a single-stage training protocol and systematically analyze design choices. Both the model and training code will be released to enable reproducible research on controllable full-duplex speech systems.
Drones operating in human-occupied spaces suffer from insufficient communication mechanisms that create uncertainty about their intentions. We present HoverAI, an embodied aerial agent that integrates drone mobility, infrastructure-independent visual projection, and real-time conversational AI into a unified platform. Equipped with a MEMS laser projector, onboard semi-rigid screen, and RGB camera, HoverAI perceives users through vision and voice, responding via lip-synced avatars that adapt appearance to user demographics. The system employs a multimodal pipeline combining VAD, ASR (Whisper), LLM-based intent classification, RAG for dialogue, face analysis for personalization, and voice synthesis (XTTS v2). Evaluation demonstrates high accuracy in command recognition (F1: 0.90), demographic estimation (gender F1: 0.89, age MAE: 5.14 years), and speech transcription (WER: 0.181). By uniting aerial robotics with adaptive conversational AI and self-contained visual output, HoverAI introduces a new class of spatially-aware, socially responsive embodied agents for applications in guidance, assistance, and human-centered interaction.
Traditional speech systems typically rely on separate, task-specific models for text-to-speech (TTS), automatic speech recognition (ASR), and voice conversion (VC), resulting in fragmented pipelines that limit scalability, efficiency, and cross-task generalization. In this paper, we present General-Purpose Audio (GPA), a unified audio foundation model that integrates multiple core speech tasks within a single large language model (LLM) architecture. GPA operates on a shared discrete audio token space and supports instruction-driven task induction, enabling a single autoregressive model to flexibly perform TTS, ASR, and VC without architectural modifications. This unified design combines a fully autoregressive formulation over discrete speech tokens, joint multi-task training across speech domains, and a scalable inference pipeline that achieves high concurrency and throughput. The resulting model family supports efficient multi-scale deployment, including a lightweight 0.3B-parameter variant optimized for edge and resource-constrained environments. Together, these design choices demonstrate that a unified autoregressive architecture can achieve competitive performance across diverse speech tasks while remaining viable for low-latency, practical deployment.
The development of robust, multilingual speaker recognition systems is hindered by a lack of large-scale, publicly available and multilingual datasets, particularly for the read-speech style crucial for applications like anti-spoofing. To address this gap, we introduce the TidyVoice dataset derived from the Mozilla Common Voice corpus after mitigating its inherent speaker heterogeneity within the provided client IDs. TidyVoice currently contains training and test data from over 212,000 monolingual speakers (Tidy-M) and around 4,500 multilingual speakers (Tidy-X) from which we derive two distinct conditions. The Tidy-M condition contains target and non-target trials from monolingual speakers across 81 languages. The Tidy-X condition contains target and non-target trials from multilingual speakers in both same- and cross-language trials. We employ two architectures of ResNet models, achieving a 0.35% EER by fine-tuning on our comprehensive Tidy-M partition. Moreover, we show that this fine-tuning enhances the model's generalization, improving performance on unseen conversational interview data from the CANDOR corpus. The complete dataset, evaluation trials, and our models are publicly released to provide a new resource for the community.