Abstract:Language agents have shown promising adaptability in dynamic environments to perform complex tasks. However, despite the versatile knowledge embedded in large language models, these agents still fall short when it comes to tasks that require planning. We introduce STEP, a novel framework designed to efficiently learn from previous experiences to enhance the planning capabilities of language agents in future steps. Concretely, STEP functions through four interconnected components. First, the Planner takes on the task, breaks it down into subtasks and provides relevant insights. Then the Executor generates action candidates, while the Evaluator ensures the actions align with learned rules from previous experiences. Lastly, Memory stores experiences to inform future decisions. In the ScienceWorld benchmark, our results show that STEP consistently outperforms state-of-the-art models, achieving an overall score of 67.4 and successfully completing 12 out of 18 tasks. These findings highlight STEP's potential as a framework for enhancing planning capabilities in language agents, paving the way for more sophisticated task-solving in dynamic environments.
Abstract:Large Multimodal Models (LMMs) have demonstrated the ability to interact with humans under real-world conditions by combining Large Language Models (LLMs) and modality encoders to align multimodal information (visual and auditory) with text. However, such models raise new safety challenges of whether models that are safety-aligned on text also exhibit consistent safeguards for multimodal inputs. Despite recent safety-alignment research on vision LMMs, the safety of audio LMMs remains under-explored. In this work, we comprehensively red team the safety of five advanced audio LMMs under three settings: (i) harmful questions in both audio and text formats, (ii) harmful questions in text format accompanied by distracting non-speech audio, and (iii) speech-specific jailbreaks. Our results under these settings demonstrate that open-source audio LMMs suffer an average attack success rate of 69.14% on harmful audio questions, and exhibit safety vulnerabilities when distracted with non-speech audio noise. Our speech-specific jailbreaks on Gemini-1.5-Pro achieve an attack success rate of 70.67% on the harmful query benchmark. We provide insights on what could cause these reported safety-misalignments. Warning: this paper contains offensive examples.
Abstract:Large language models (LLMs) have exhibited outstanding performance in engaging with humans and addressing complex questions by leveraging their vast implicit knowledge and robust reasoning capabilities. However, such models are vulnerable to jailbreak attacks, leading to the generation of harmful responses. Despite recent research on single-turn jailbreak strategies to facilitate the development of defence mechanisms, the challenge of revealing vulnerabilities under multi-turn setting remains relatively under-explored. In this work, we propose Jigsaw Puzzles (JSP), a straightforward yet effective multi-turn jailbreak strategy against the advanced LLMs. JSP splits questions into harmless fractions as the input of each turn, and requests LLMs to reconstruct and respond to questions under multi-turn interaction. Our experimental results demonstrate that the proposed JSP jailbreak bypasses original safeguards against explicitly harmful content, achieving an average attack success rate of 93.76% on 189 harmful queries across 5 advanced LLMs (Gemini-1.5-Pro, Llama-3.1-70B, GPT-4, GPT-4o, GPT-4o-mini). Moreover, JSP achieves a state-of-the-art attack success rate of 92% on GPT-4 on the harmful query benchmark, and exhibits strong resistant to defence strategies. Warning: this paper contains offensive examples.
Abstract:Recent research in Large Language Models (LLMs) has shown promising progress related to LLM alignment with human preferences. LLM-empowered decision-making systems are expected to be predictable, reliable and trustworthy, which implies being free from paradoxes or contradictions that could undermine their credibility and validity. However, LLMs still exhibit inconsistent and biased behaviour when making decisions or judgements. In this work, we focus on studying logical consistency of LLMs as a prerequisite for more reliable and trustworthy systems. Logical consistency ensures that decisions are based on a stable and coherent understanding of the problem, reducing the risk of erratic or contradictory outputs. We first propose a universal framework to quantify the logical consistency via three fundamental proxies: transitivity, commutativity and negation invariance. We then evaluate logical consistency, using the defined measures, of a wide range of LLMs, demonstrating that it can serve as a strong proxy for overall robustness. Additionally, we introduce a data refinement and augmentation technique that enhances the logical consistency of LLMs without sacrificing alignment to human preferences. It augments noisy and sparse pairwise-comparison annotations by estimating a partially or totally ordered preference rankings using rank aggregation methods. Finally, we show that logical consistency impacts the performance of LLM-based logic-dependent algorithms, where LLMs serve as logical operators.
Abstract:Recent research in Large Language Models (LLMs) has shown promising progress related to LLM alignment with human preferences. LLM-empowered decision-making systems are expected to be predictable, reliable and trustworthy, which implies being free from paradoxes or contradictions that could undermine their credibility and validity. However, LLMs still exhibit inconsistent and biased behaviour when making decisions or judgements. In this work, we focus on studying logical consistency of LLMs as a prerequisite for more reliable and trustworthy systems. Logical consistency ensures that decisions are based on a stable and coherent understanding of the problem, reducing the risk of erratic or contradictory outputs. We first propose a universal framework to quantify the logical consistency via three fundamental proxies: transitivity, commutativity and negation invariance. We then evaluate logical consistency, using the defined measures, of a wide range of LLMs, demonstrating that it can serve as a strong proxy for overall robustness. Additionally, we introduce a data refinement and augmentation technique that enhances the logical consistency of LLMs without sacrificing alignment to human preferences. It augments noisy and sparse pairwise-comparison annotations by estimating a partially or totally ordered preference rankings using rank aggregation methods. Finally, we show that logical consistency impacts the performance of LLM-based logic-dependent algorithms, where LLMs serve as logical operators.
Abstract:Logical reasoning is a fundamental task in natural language processing that presents significant challenges to Large Language Models (LLMs). The inherent characteristics of logical reasoning makes it well-suited for symbolic representations such as first-order logic (FOL). Research in symbolic logical reasoning explored FOL generation using state-of-the-art LLMs (i.e., GPT-4) to produce FOL translations of natural language (NL) statements, but errors in translation are usually not the focus. We address this by categorizing the translation errors in FOL statements generated by LLMs. To make progress towards improving the quality of FOL translations for smaller language models such as LLaMA-2 13B and Mistral 7B, we create ProofFOL, a high-quality FOL-annotated subset of ProofWriter dataset using GPT-4o. The models fine-tuned on this silver standard data achieve a significant gain in performance when compared to larger language models such as LLaMA-2 70B. In addition to improving the model using large data, we also tackle the issue of data scarcity and introduce an incremental framework encompassing of data augmentation and verification steps. In the augmentation process, a single pair of (premises, conclusion) is split into multiple new instances based on the predicates and FOLs. This data is used for fine-tuning, and the inference on this model generates FOLs with fewer errors over the model trained on the original data. Our investigation on the translation errors leads to generation of a perturbation dataset, which is used to train a verifier that corrects potential syntactic and semantic FOL translation errors. We demonstrate an efficient method for making the most of a limited existing human-annotated dataset. Our results show state-of-the-art performance for ProofWriter and ProntoQA datasets using ProofFOL on LLaMA-2 and Mistral models.
Abstract:Recent advancements in large language models (LLMs) have significantly enhanced their capacity to aggregate and process information across multiple modalities, enabling them to perform a wide range of tasks such as multimodal data querying, tool usage, web interactions, and handling long documents. These capabilities pave the way for transforming LLMs from mere chatbots into general-purpose agents capable of interacting with the real world. This paper explores the concept of using a language model as the core component of an operating system (OS), effectively acting as a CPU that processes data stored in a context window, which functions as RAM. A key challenge in realizing such an LM OS is managing the life-long context and ensuring statefulness across sessions, a feature limited by the current session-based interaction paradigm due to context window size limit. To address this, we introduce compressor-retriever, a model-agnostic architecture designed for life-long context management. Unlike other long-context solutions such as retrieval-augmented generation, our approach exclusively uses the base model's forward function to compress and retrieve context, ensuring end-to-end differentiability. Preliminary experiments demonstrate the effectiveness of this architecture in in-context learning tasks, marking a step towards the development of a fully stateful LLM OS. Project repo available at: https://github.com/gblackout/LM-OS
Abstract:Large Multimodal Models (LMMs) have achieved great success recently, demonstrating a strong capability to understand multimodal information and to interact with human users. Despite the progress made, the challenge of detecting high-risk interactions in multimodal settings, and in particular in speech modality, remains largely unexplored. Conventional research on risk for speech modality primarily emphasises the content (e.g., what is captured as transcription). However, in speech-based interactions, paralinguistic cues in audio can significantly alter the intended meaning behind utterances. In this work, we propose a speech-specific risk taxonomy, covering 8 risk categories under hostility (malicious sarcasm and threats), malicious imitation (age, gender, ethnicity), and stereotypical biases (age, gender, ethnicity). Based on the taxonomy, we create a small-scale dataset for evaluating current LMMs capability in detecting these categories of risk. We observe even the latest models remain ineffective to detect various paralinguistic-specific risks in speech (e.g., Gemini 1.5 Pro is performing only slightly above random baseline). Warning: this paper contains biased and offensive examples.
Abstract:Large Language Models (LLMs) have shown superior capability to solve reasoning problems with programs. While being a promising direction, most of such frameworks are trained and evaluated in settings with a prior knowledge of task requirements. However, as LLMs become more capable, it is necessary to assess their reasoning abilities in more realistic scenarios where many real-world problems are open-ended with ambiguous scope, and often require multiple formalisms to solve. To investigate this, we introduce the task of reasoning in the wild, where an LLM is tasked to solve a reasoning problem of unknown type by identifying the subproblems and their corresponding formalisms, and writing a program to solve each subproblem, guided by a tactic. We create a large tactic-guided trajectory dataset containing detailed solutions to a diverse set of reasoning problems, ranging from well-defined single-form reasoning (e.g., math, logic), to ambiguous and hybrid ones (e.g., commonsense, combined math and logic). This allows us to test various aspects of LLMs reasoning at the fine-grained level such as the selection and execution of tactics, and the tendency to take undesired shortcuts. In experiments, we highlight that existing LLMs fail significantly on problems with ambiguous and mixed scope, revealing critical limitations and overfitting issues (e.g. accuracy on GSM8K drops by at least 50\%). We further show the potential of finetuning a local LLM on the tactic-guided trajectories in achieving better performance. Project repo is available at github.com/gblackout/Reason-in-the-Wild
Abstract:Recent advancements in multimodal large language models (MLLMs) have made significant progress in integrating information across various modalities, yet real-world applications in educational and scientific domains remain challenging. This paper introduces the Multimodal Scientific ASR (MS-ASR) task, which focuses on transcribing scientific conference videos by leveraging visual information from slides to enhance the accuracy of technical terminologies. Realized that traditional metrics like WER fall short in assessing performance accurately, prompting the proposal of severity-aware WER (SWER) that considers the content type and severity of ASR errors. We propose the Scientific Vision Augmented ASR (SciVASR) framework as a baseline method, enabling MLLMs to improve transcript quality through post-editing. Evaluations of state-of-the-art MLLMs, including GPT-4o, show a 45% improvement over speech-only baselines, highlighting the importance of multimodal information integration.