Abstract:Large language models demonstrate remarkable reasoning capabilities but often produce unreliable or incorrect responses. Existing verification methods are typically model-specific or domain-restricted, requiring significant computational resources and lacking scalability across diverse reasoning tasks. To address these limitations, we propose VerifiAgent, a unified verification agent that integrates two levels of verification: meta-verification, which assesses completeness and consistency in model responses, and tool-based adaptive verification, where VerifiAgent autonomously selects appropriate verification tools based on the reasoning type, including mathematical, logical, or commonsense reasoning. This adaptive approach ensures both efficiency and robustness across different verification scenarios. Experimental results show that VerifiAgent outperforms baseline verification methods (e.g., deductive verifier, backward verifier) among all reasoning tasks. Additionally, it can further enhance reasoning accuracy by leveraging feedback from verification results. VerifiAgent can also be effectively applied to inference scaling, achieving better results with fewer generated samples and costs compared to existing process reward models in the mathematical reasoning domain. Code is available at https://github.com/Jiuzhouh/VerifiAgent
Abstract:High-quality speech dialogue datasets are crucial for Speech-LLM development, yet existing acquisition methods face significant limitations. Human recordings incur high costs and privacy concerns, while synthetic approaches often lack conversational authenticity. To address these challenges, we introduce \textsc{SpeechDialogueFactory}, a production-ready framework for generating natural speech dialogues efficiently. Our solution employs a comprehensive pipeline including metadata generation, dialogue scripting, paralinguistic-enriched utterance simulation, and natural speech synthesis with voice cloning. Additionally, the system provides an interactive UI for detailed sample inspection and a high-throughput batch synthesis mode. Evaluations show that dialogues generated by our system achieve a quality comparable to human recordings while significantly reducing production costs. We release our work as an open-source toolkit, alongside example datasets available in English and Chinese, empowering researchers and developers in Speech-LLM research and development.
Abstract:Large Language Models (LLMs) reasoning processes are challenging to analyze due to their complexity and the lack of organized visualization tools. We present ReasonGraph, a web-based platform for visualizing and analyzing LLM reasoning processes. It supports both sequential and tree-based reasoning methods while integrating with major LLM providers and over fifty state-of-the-art models. ReasonGraph incorporates an intuitive UI with meta reasoning method selection, configurable visualization parameters, and a modular framework that facilitates efficient extension. Our evaluation shows high parsing reliability, efficient processing, and strong usability across various downstream applications. By providing a unified visualization framework, ReasonGraph reduces cognitive load in analyzing complex reasoning paths, improves error detection in logical processes, and enables more effective development of LLM-based applications. The platform is open-source, promoting accessibility and reproducibility in LLM reasoning analysis.
Abstract:The recent successful paradigm of solving logical reasoning problems with tool-augmented large language models (LLMs) leverages translation of natural language statements into First-Order Logic~(FOL) and external theorem provers. However, the correctness of FOL statements, comprising operators and text predicates, often goes unverified due to the lack of a reliable evaluation metric for comparing generated and ground-truth FOLs. In this paper, we present a comprehensive study of sensitivity of existing metrics and their alignment with human judgement on FOL evaluation. Using ground-truth FOLs, we carefully designed various perturbations on the ground-truth to assess metric sensitivity. We sample FOL translation candidates for natural language statements and measure the ranking alignment between automatic metrics and human annotators. Our empirical findings highlight oversensitivity in the n-gram metric BLEU for text perturbations, the semantic graph metric Smatch++ for structural perturbations, and FOL metric for operator perturbation. We also observe a closer alignment between BertScore and human judgement. Additionally, we show that combining metrics enhances both alignment and sensitivity compared to using individual metrics.
Abstract:In recent years, Large Language Models (LLMs) have shown great potential across a wide range of legal tasks. Despite these advances, mitigating hallucination remains a significant challenge, with state-of-the-art LLMs still frequently generating incorrect legal references. In this paper, we focus on the problem of legal citation prediction within the Australian law context, where correctly identifying and citing relevant legislations or precedents is critical. We compare several approaches: prompting general purpose and law-specialised LLMs, retrieval-only pipelines with both generic and domain-specific embeddings, task-specific instruction-tuning of LLMs, and hybrid strategies that combine LLMs with retrieval augmentation, query expansion, or voting ensembles. Our findings indicate that domain-specific pre-training alone is insufficient for achieving satisfactory citation accuracy even after law-specialised pre-training. In contrast, instruction tuning on our task-specific dataset dramatically boosts performance reaching the best results across all settings. We also highlight that database granularity along with the type of embeddings play a critical role in the performance of retrieval systems. Among retrieval-based approaches, hybrid methods consistently outperform retrieval-only setups, and among these, ensemble voting delivers the best result by combining the predictive quality of instruction-tuned LLMs with the retrieval system.
Abstract:Language agents have shown promising adaptability in dynamic environments to perform complex tasks. However, despite the versatile knowledge embedded in large language models, these agents still fall short when it comes to tasks that require planning. We introduce STEP, a novel framework designed to efficiently learn from previous experiences to enhance the planning capabilities of language agents in future steps. Concretely, STEP functions through four interconnected components. First, the Planner takes on the task, breaks it down into subtasks and provides relevant insights. Then the Executor generates action candidates, while the Evaluator ensures the actions align with learned rules from previous experiences. Lastly, Memory stores experiences to inform future decisions. In the ScienceWorld benchmark, our results show that STEP consistently outperforms state-of-the-art models, achieving an overall score of 67.4 and successfully completing 12 out of 18 tasks. These findings highlight STEP's potential as a framework for enhancing planning capabilities in language agents, paving the way for more sophisticated task-solving in dynamic environments.
Abstract:Large Multimodal Models (LMMs) have demonstrated the ability to interact with humans under real-world conditions by combining Large Language Models (LLMs) and modality encoders to align multimodal information (visual and auditory) with text. However, such models raise new safety challenges of whether models that are safety-aligned on text also exhibit consistent safeguards for multimodal inputs. Despite recent safety-alignment research on vision LMMs, the safety of audio LMMs remains under-explored. In this work, we comprehensively red team the safety of five advanced audio LMMs under three settings: (i) harmful questions in both audio and text formats, (ii) harmful questions in text format accompanied by distracting non-speech audio, and (iii) speech-specific jailbreaks. Our results under these settings demonstrate that open-source audio LMMs suffer an average attack success rate of 69.14% on harmful audio questions, and exhibit safety vulnerabilities when distracted with non-speech audio noise. Our speech-specific jailbreaks on Gemini-1.5-Pro achieve an attack success rate of 70.67% on the harmful query benchmark. We provide insights on what could cause these reported safety-misalignments. Warning: this paper contains offensive examples.
Abstract:Large language models (LLMs) have exhibited outstanding performance in engaging with humans and addressing complex questions by leveraging their vast implicit knowledge and robust reasoning capabilities. However, such models are vulnerable to jailbreak attacks, leading to the generation of harmful responses. Despite recent research on single-turn jailbreak strategies to facilitate the development of defence mechanisms, the challenge of revealing vulnerabilities under multi-turn setting remains relatively under-explored. In this work, we propose Jigsaw Puzzles (JSP), a straightforward yet effective multi-turn jailbreak strategy against the advanced LLMs. JSP splits questions into harmless fractions as the input of each turn, and requests LLMs to reconstruct and respond to questions under multi-turn interaction. Our experimental results demonstrate that the proposed JSP jailbreak bypasses original safeguards against explicitly harmful content, achieving an average attack success rate of 93.76% on 189 harmful queries across 5 advanced LLMs (Gemini-1.5-Pro, Llama-3.1-70B, GPT-4, GPT-4o, GPT-4o-mini). Moreover, JSP achieves a state-of-the-art attack success rate of 92% on GPT-4 on the harmful query benchmark, and exhibits strong resistant to defence strategies. Warning: this paper contains offensive examples.
Abstract:Recent research in Large Language Models (LLMs) has shown promising progress related to LLM alignment with human preferences. LLM-empowered decision-making systems are expected to be predictable, reliable and trustworthy, which implies being free from paradoxes or contradictions that could undermine their credibility and validity. However, LLMs still exhibit inconsistent and biased behaviour when making decisions or judgements. In this work, we focus on studying logical consistency of LLMs as a prerequisite for more reliable and trustworthy systems. Logical consistency ensures that decisions are based on a stable and coherent understanding of the problem, reducing the risk of erratic or contradictory outputs. We first propose a universal framework to quantify the logical consistency via three fundamental proxies: transitivity, commutativity and negation invariance. We then evaluate logical consistency, using the defined measures, of a wide range of LLMs, demonstrating that it can serve as a strong proxy for overall robustness. Additionally, we introduce a data refinement and augmentation technique that enhances the logical consistency of LLMs without sacrificing alignment to human preferences. It augments noisy and sparse pairwise-comparison annotations by estimating a partially or totally ordered preference rankings using rank aggregation methods. Finally, we show that logical consistency impacts the performance of LLM-based logic-dependent algorithms, where LLMs serve as logical operators.
Abstract:Recent research in Large Language Models (LLMs) has shown promising progress related to LLM alignment with human preferences. LLM-empowered decision-making systems are expected to be predictable, reliable and trustworthy, which implies being free from paradoxes or contradictions that could undermine their credibility and validity. However, LLMs still exhibit inconsistent and biased behaviour when making decisions or judgements. In this work, we focus on studying logical consistency of LLMs as a prerequisite for more reliable and trustworthy systems. Logical consistency ensures that decisions are based on a stable and coherent understanding of the problem, reducing the risk of erratic or contradictory outputs. We first propose a universal framework to quantify the logical consistency via three fundamental proxies: transitivity, commutativity and negation invariance. We then evaluate logical consistency, using the defined measures, of a wide range of LLMs, demonstrating that it can serve as a strong proxy for overall robustness. Additionally, we introduce a data refinement and augmentation technique that enhances the logical consistency of LLMs without sacrificing alignment to human preferences. It augments noisy and sparse pairwise-comparison annotations by estimating a partially or totally ordered preference rankings using rank aggregation methods. Finally, we show that logical consistency impacts the performance of LLM-based logic-dependent algorithms, where LLMs serve as logical operators.