Abstract:Flow-based generative models are widely used in text-to-speech (TTS) systems to learn the distribution of audio features (e.g., Mel-spectrograms) given the input tokens and to sample from this distribution to generate diverse utterances. However, in the zero-shot multi-speaker TTS scenario, the generated utterances lack diversity and naturalness. In this paper, we propose to improve the diversity of utterances by explicitly learning the distribution of fundamental frequency sequences (pitch contours) of each speaker during training using a stochastic flow-based pitch predictor, then conditioning the model on generated pitch contours during inference. The experimental results demonstrate that the proposed method yields a significant improvement in the naturalness and diversity of speech generated by a Glow-TTS model that uses explicit stochastic pitch prediction, over a Glow-TTS baseline and an improved Glow-TTS model that uses a stochastic duration predictor.
Abstract:Training of multi-speaker text-to-speech (TTS) systems relies on curated datasets based on high-quality recordings or audiobooks. Such datasets often lack speaker diversity and are expensive to collect. As an alternative, recent studies have leveraged the availability of large, crowdsourced automatic speech recognition (ASR) datasets. A major problem with such datasets is the presence of noisy and/or distorted samples, which degrade TTS quality. In this paper, we propose to automatically select high-quality training samples using a non-intrusive mean opinion score (MOS) estimator, WV-MOS. We show the viability of this approach for training a multi-speaker GlowTTS model on the Common Voice English dataset. Our approach improves the overall quality of generated utterances by 1.26 MOS point with respect to training on all the samples and by 0.35 MOS point with respect to training on the LibriTTS dataset. This opens the door to automatic TTS dataset curation for a wider range of languages.