Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
Both fine-grained discriminative details and global semantic features can contribute to solving person re-identification challenges, such as occlusion and pose variations. Vision foundation models (\textit{e.g.}, DINO) excel at mining local textures, and vision-language models (\textit{e.g.}, CLIP) capture strong global semantic difference. Existing methods predominantly rely on a single paradigm, neglecting the potential benefits of their integration. In this paper, we analyze the complementary roles of these two architectures and propose a framework to synergize their strengths by a \textbf{D}ual-\textbf{R}egularized Bidirectional \textbf{Transformer} (\textbf{DRFormer}). The dual-regularization mechanism ensures diverse feature extraction and achieves a better balance in the contributions of the two models. Extensive experiments on five benchmarks show that our method effectively harmonizes local and global representations, achieving competitive performance against state-of-the-art methods.
Safe UAV emergency landing requires more than just identifying flat terrain; it demands understanding complex semantic risks (e.g., crowds, temporary structures) invisible to traditional geometric sensors. In this paper, we propose a novel framework leveraging Remote Sensing (RS) imagery and Multimodal Large Language Models (MLLMs) for global context-aware landing site assessment. Unlike local geometric methods, our approach employs a coarse-to-fine pipeline: first, a lightweight semantic segmentation module efficiently pre-screens candidate areas; second, a vision-language reasoning agent fuses visual features with Point-of-Interest (POI) data to detect subtle hazards. To validate this approach, we construct and release the Emergency Landing Site Selection (ELSS) benchmark. Experiments demonstrate that our framework significantly outperforms geometric baselines in risk identification accuracy. Furthermore, qualitative results confirm its ability to generate human-like, interpretable justifications, enhancing trust in automated decision-making. The benchmark dataset is publicly accessible at https://anonymous.4open.science/r/ELSS-dataset-43D7.
Traditional object detection systems are typically constrained to predefined categories, limiting their applicability in dynamic environments. In contrast, open-vocabulary object detection (OVD) enables the identification of objects from novel classes not present in the training set. Recent advances in visual-language modeling have led to significant progress of OVD. However, prior works face challenges in either adapting the single-scale image backbone from CLIP to the detection framework or ensuring robust visual-language alignment. We propose Visual-Language Detection (VLDet), a novel framework that revamps feature pyramid for fine-grained visual-language alignment, leading to improved OVD performance. With the VL-PUB module, VLDet effectively exploits the visual-language knowledge from CLIP and adapts the backbone for object detection through feature pyramid. In addition, we introduce the SigRPN block, which incorporates a sigmoid-based anchor-text contrastive alignment loss to improve detection of novel categories. Through extensive experiments, our approach achieves 58.7 AP for novel classes on COCO2017 and 24.8 AP on LVIS, surpassing all state-of-the-art methods and achieving significant improvements of 27.6% and 6.9%, respectively. Furthermore, VLDet also demonstrates superior zero-shot performance on closed-set object detection.
Understanding where drivers direct their visual attention during driving, as characterized by gaze behavior, is critical for developing next-generation advanced driver-assistance systems and improving road safety. This paper tackles this challenge as a semantic identification task from the road scenes captured by a vehicle's front-view camera. Specifically, the collocation of gaze points with object semantics is investigated using three distinct vision-based approaches: direct object detection (YOLOv13), segmentation-assisted classification (SAM2 paired with EfficientNetV2 versus YOLOv13), and query-based Vision-Language Models, VLMs (Qwen2.5-VL-7b versus Qwen2.5-VL-32b). The results demonstrate that the direct object detection (YOLOv13) and Qwen2.5-VL-32b significantly outperform other approaches, achieving Macro F1-Scores over 0.84. The large VLM (Qwen2.5-VL-32b), in particular, exhibited superior robustness and performance for identifying small, safety-critical objects such as traffic lights, especially in adverse nighttime conditions. Conversely, the segmentation-assisted paradigm suffers from a "part-versus-whole" semantic gap that led to large failure in recall. The results reveal a fundamental trade-off between the real-time efficiency of traditional detectors and the richer contextual understanding and robustness offered by large VLMs. These findings provide critical insights and practical guidance for the design of future human-aware intelligent driver monitoring systems.
More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.
In this report, we introduce Qwen3-ASR family, which includes two powerful all-in-one speech recognition models and a novel non-autoregressive speech forced alignment model. Qwen3-ASR-1.7B and Qwen3-ASR-0.6B are ASR models that support language identification and ASR for 52 languages and dialects. Both of them leverage large-scale speech training data and the strong audio understanding ability of their foundation model Qwen3-Omni. We conduct comprehensive internal evaluation besides the open-sourced benchmarks as ASR models might differ little on open-sourced benchmark scores but exhibit significant quality differences in real-world scenarios. The experiments reveal that the 1.7B version achieves SOTA performance among open-sourced ASR models and is competitive with the strongest proprietary APIs while the 0.6B version offers the best accuracy-efficiency trade-off. Qwen3-ASR-0.6B can achieve an average TTFT as low as 92ms and transcribe 2000 seconds speech in 1 second at a concurrency of 128. Qwen3-ForcedAligner-0.6B is an LLM based NAR timestamp predictor that is able to align text-speech pairs in 11 languages. Timestamp accuracy experiments show that the proposed model outperforms the three strongest force alignment models and takes more advantages in efficiency and versatility. To further accelerate the community research of ASR and audio understanding, we release these models under the Apache 2.0 license.
Identifying molecules from mass spectrometry (MS) data remains a fundamental challenge due to the semantic gap between physical spectral peaks and underlying chemical structures. Existing deep learning approaches often treat spectral matching as a closed-set recognition task, limiting their ability to generalize to unseen molecular scaffolds. To overcome this limitation, we propose a cross-modal alignment framework that directly maps mass spectra into the chemically meaningful molecular structure embedding space of a pretrained chemical language model. On a strict scaffold-disjoint benchmark, our model achieves a Top-1 accuracy of 42.2% in fixed 256-way zero-shot retrieval and demonstrates strong generalization under a global retrieval setting. Moreover, the learned embedding space demonstrates strong chemical coherence, reaching 95.4% accuracy in 5-way 5-shot molecular re-identification. These results suggest that explicitly integrating physical spectral resolution with molecular structure embedding is key to solving the generalization bottleneck in molecular identification from MS data.
Interlingual subtitling, which translates subtitles of visual media into a target language, is essential for entertainment localization but has not yet been explored in machine translation. Although Large Language Models (LLMs) have significantly advanced the general capabilities of machine translation, the distinctive characteristics of subtitle texts pose persistent challenges in interlingual subtitling, particularly regarding semantic coherence, pronoun and terminology translation, and translation expressiveness. To address these issues, we present Hermes, an LLM-based automated subtitling framework. Hermes integrates three modules: Speaker Diarization, Terminology Identification, and Expressiveness Enhancement, which effectively tackle the above challenges. Experiments demonstrate that Hermes achieves state-of-the-art diarization performance and generates expressive, contextually coherent translations, thereby advancing research in interlingual subtitling.
Aerial Object Goal Navigation, a challenging frontier in Embodied AI, requires an Unmanned Aerial Vehicle (UAV) agent to autonomously explore, reason, and identify a specific target using only visual perception and language description. However, existing methods struggle with the memorization of complex spatial representations in aerial environments, reliable and interpretable action decision-making, and inefficient exploration and information gathering. To address these challenges, we introduce \textbf{APEX} (Aerial Parallel Explorer), a novel hierarchical agent designed for efficient exploration and target acquisition in complex aerial settings. APEX is built upon a modular, three-part architecture: 1) Dynamic Spatio-Semantic Mapping Memory, which leverages the zero-shot capability of a Vision-Language Model (VLM) to dynamically construct high-resolution 3D Attraction, Exploration, and Obstacle maps, serving as an interpretable memory mechanism. 2) Action Decision Module, trained with reinforcement learning, which translates this rich spatial understanding into a fine-grained and robust control policy. 3) Target Grounding Module, which employs an open-vocabulary detector to achieve definitive and generalizable target identification. All these components are integrated into a hierarchical, asynchronous, and parallel framework, effectively bypassing the VLM's inference latency and boosting the agent's proactivity in exploration. Extensive experiments show that APEX outperforms the previous state of the art by +4.2\% SR and +2.8\% SPL on challenging UAV-ON benchmarks, demonstrating its superior efficiency and the effectiveness of its hierarchical asynchronous design. Our source code is provided in \href{https://github.com/4amGodvzx/apex}{GitHub}