Abstract:More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.
Abstract:Large Language Models (LLMs) offer a promising solution to complement traditional teaching and address global teacher shortages that affect hundreds of millions of children, but they fail to provide grade-appropriate responses for students at different educational levels. We introduce a framework for finetuning LLMs to generate age-appropriate educational content across six grade levels, from lower elementary to adult education. Our framework successfully adapts explanations to match students' comprehension capacities without sacrificing factual correctness. This approach integrates seven established readability metrics through a clustering method and builds a comprehensive dataset for grade-specific content generation. Evaluations across multiple datasets with 208 human participants demonstrate substantial improvements in grade-level alignment, achieving a 35.64 percentage point increase compared to prompt-based methods while maintaining response accuracy. AI-assisted learning tailored to different grade levels has the potential to advance educational engagement and equity.




Abstract:Despite the recent advancement of Large Langauge Models (LLMs), they struggle with complex queries often involving multiple conditions, common in real-world scenarios. We propose Thinking with Tables, a technique that assists LLMs to leverage tables for intermediate thinking aligning with human cognitive behavior. By introducing a pre-instruction that triggers an LLM to organize information in tables, our approach achieves a 40.29\% average relative performance increase, higher robustness, and show generalizability to different requests, conditions, or scenarios. We additionally show the influence of data structuredness for the model by comparing results from four distinct structuring levels that we introduce.




Abstract:Large language models (LLMs) have achieved unprecedented performance in various applications, yet their evaluation remains a critical issue. Existing hallucination benchmarks are either static or lack adjustable complexity for thorough analysis. We contend that utilizing existing relational databases is a promising approach for constructing benchmarks due to their accurate knowledge description via functional dependencies. We propose ERBench to automatically convert any relational database into a benchmark based on the entity-relationship (ER) model. Our key idea is to construct questions using the database schema, records, and functional dependencies such that they can be automatically verified. In addition, we use foreign key constraints to join relations and construct multihop questions, which can be arbitrarily complex and used to debug the intermediate answers of LLMs. Finally, ERBench supports continuous evaluation, multimodal questions, and various prompt engineering techniques. In our experiments, we construct an LLM benchmark using databases of multiple domains and make an extensive comparison of contemporary LLMs. We observe that better LLMs like GPT-4 can handle a larger variety of question types, but are by no means perfect. Also, correct answers do not necessarily imply correct rationales, which is an important evaluation that ERBench does better than other benchmarks for various question types. Code is available at https: //github.com/DILAB-KAIST/ERBench.