Abstract:Miniature underwater robots play a crucial role in the exploration and development of marine resources, particularly in confined spaces and high-pressure deep-sea environments. This study presents the design, optimization, and performance of a miniature robotic fish, powered by the oscillation of bio-inspired fins. These fins feature a rigid-flexible hybrid structure and use an eccentric rotating mass (ERM) vibration motor as the excitation source to generate high-frequency unidirectional oscillations that induce acoustic streaming for propulsion. The drive mechanism, powered by miniature ERM vibration motors, eliminates the need for complex mechanical drive systems, enabling complete isolation of the entire drive system from the external environment and facilitating the miniaturization of the robotic fish. A compact, untethered robotic fish, measuring 85*60*45 mm^3, is equipped with three bio-inspired fins located at the pectoral and caudal positions. Experimental results demonstrate that the robotic fish achieves a maximum forward swimming speed of 1.36 body lengths (BL) per second powered by all fins and minimum turning radius of 0.6 BL when powered by a single fin. These results underscore the significance of employing the ERM vibration motor in advancing the development of highly maneuverable, miniature untethered underwater robots for various marine exploration tasks.
Abstract:As large-scale diffusion models continue to advance, they excel at producing high-quality images but often generate unwanted content, such as sexually explicit or violent content. Existing methods for concept removal generally guide the image generation process but can unintentionally modify unrelated regions, leading to inconsistencies with the original model. We propose a novel approach for targeted concept replacing in diffusion models, enabling specific concepts to be removed without affecting non-target areas. Our method introduces a dedicated concept localizer for precisely identifying the target concept during the denoising process, trained with few-shot learning to require minimal labeled data. Within the identified region, we introduce a training-free Dual Prompts Cross-Attention (DPCA) module to substitute the target concept, ensuring minimal disruption to surrounding content. We evaluate our method on concept localization precision and replacement efficiency. Experimental results demonstrate that our method achieves superior precision in localizing target concepts and performs coherent concept replacement with minimal impact on non-target areas, outperforming existing approaches.
Abstract:In recent advancements, multimodal large language models (MLLMs) have been fine-tuned on specific medical image datasets to address medical visual question answering (Med-VQA) tasks. However, this common approach of task-specific fine-tuning is costly and necessitates separate models for each downstream task, limiting the exploration of zero-shot capabilities. In this paper, we introduce MC-CoT, a modular cross-modal collaboration Chain-of-Thought (CoT) framework designed to enhance the zero-shot performance of MLLMs in Med-VQA by leveraging large language models (LLMs). MC-CoT improves reasoning and information extraction by integrating medical knowledge and task-specific guidance, where LLM provides various complex medical reasoning chains and MLLM provides various observations of medical images based on instructions of the LLM. Our experiments on datasets such as SLAKE, VQA-RAD, and PATH-VQA show that MC-CoT surpasses standalone MLLMs and various multimodality CoT frameworks in recall rate and accuracy. These findings highlight the importance of incorporating background information and detailed guidance in addressing complex zero-shot Med-VQA tasks.
Abstract:With the growing prevalence of generative artificial intelligence (AI), an increasing amount of content is no longer exclusively generated by humans but by generative AI models with human guidance. This shift presents notable challenges for the delineation of originality due to the varying degrees of human contribution in AI-assisted works. This study raises the research question of measuring human contribution in AI-assisted content generation and introduces a framework to address this question that is grounded in information theory. By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation. Our experimental results demonstrate that the proposed measure effectively discriminates between varying degrees of human contribution across multiple creative domains. We hope that this work lays a foundation for measuring human contributions in AI-assisted content generation in the era of generative AI.
Abstract:Few-shot image classification aims to classify novel classes with few labeled samples. Recent research indicates that deep local descriptors have better representational capabilities. These studies recognize the impact of background noise on classification performance. They typically filter query descriptors using all local descriptors in the support classes or engage in bidirectional selection between local descriptors in support and query sets. However, they ignore the fact that background features may be useful for the classification performance of specific tasks. This paper proposes a novel task-aware contrastive local descriptor selection network (TCDSNet). First, we calculate the contrastive discriminative score for each local descriptor in the support class, and select discriminative local descriptors to form a support descriptor subset. Finally, we leverage support descriptor subsets to adaptively select discriminative query descriptors for specific tasks. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on both general and fine-grained datasets.
Abstract:More and more end-to-end text spotting methods based on Transformer architecture have demonstrated superior performance. These methods utilize a bipartite graph matching algorithm to perform one-to-one optimal matching between predicted objects and actual objects. However, the instability of bipartite graph matching can lead to inconsistent optimization targets, thereby affecting the training performance of the model. Existing literature applies denoising training to solve the problem of bipartite graph matching instability in object detection tasks. Unfortunately, this denoising training method cannot be directly applied to text spotting tasks, as these tasks need to perform irregular shape detection tasks and more complex text recognition tasks than classification. To address this issue, we propose a novel denoising training method (DNTextSpotter) for arbitrary-shaped text spotting. Specifically, we decompose the queries of the denoising part into noised positional queries and noised content queries. We use the four Bezier control points of the Bezier center curve to generate the noised positional queries. For the noised content queries, considering that the output of the text in a fixed positional order is not conducive to aligning position with content, we employ a masked character sliding method to initialize noised content queries, thereby assisting in the alignment of text content and position. To improve the model's perception of the background, we further utilize an additional loss function for background characters classification in the denoising training part.Although DNTextSpotter is conceptually simple, it outperforms the state-of-the-art methods on four benchmarks (Total-Text, SCUT-CTW1500, ICDAR15, and Inverse-Text), especially yielding an improvement of 11.3% against the best approach in Inverse-Text dataset.
Abstract:With the increasing demand for multiple applications on internet of vehicles. It requires vehicles to carry out multiple computing tasks in real time. However, due to the insufficient computing capability of vehicles themselves, offloading tasks to vehicular edge computing (VEC) servers and allocating computing resources to tasks becomes a challenge. In this paper, a multi task digital twin (DT) VEC network is established. By using DT to develop offloading strategies and resource allocation strategies for multiple tasks of each vehicle in a single slot, an optimization problem is constructed. To solve it, we propose a multi-agent reinforcement learning method on the task offloading and resource allocation. Numerous experiments demonstrate that our method is effective compared to other benchmark algorithms.
Abstract:As a promising technology, vehicular edge computing (VEC) can provide computing and caching services by deploying VEC servers near vehicles. However, VEC networks still face challenges such as high vehicle mobility. Digital twin (DT), an emerging technology, can predict, estimate, and analyze real-time states by digitally modeling objects in the physical world. By integrating DT with VEC, a virtual vehicle DT can be created in the VEC server to monitor the real-time operating status of vehicles. However, maintaining the vehicle DT model requires ongoing attention from the VEC server, which also needs to offer computing services for the vehicles. Therefore, effective allocation and scheduling of VEC server resources are crucial. This study focuses on a general VEC network with a single VEC service and multiple vehicles, examining the two types of delays caused by twin maintenance and computational processing within the network. By transforming the problem using satisfaction functions, we propose an optimization problem aimed at maximizing each vehicle's resource utility to determine the optimal resource allocation strategy. Given the non-convex nature of the issue, we employ multi-agent Markov decision processes to reformulate the problem. Subsequently, we propose the twin maintenance and computing task processing resource collaborative scheduling (MADRL-CSTC) algorithm, which leverages multi-agent deep reinforcement learning. Through experimental comparisons with alternative algorithms, it demonstrates that our proposed approach is effective in terms of resource allocation.
Abstract:Large Language Models (LLMs) have training corpora containing large amounts of program code, greatly improving the model's code comprehension and generation capabilities. However, sound comprehensive research on detecting program vulnerabilities, a more specific task related to code, and evaluating the performance of LLMs in this more specialized scenario is still lacking. To address common challenges in vulnerability analysis, our study introduces a new benchmark, VulDetectBench, specifically designed to assess the vulnerability detection capabilities of LLMs. The benchmark comprehensively evaluates LLM's ability to identify, classify, and locate vulnerabilities through five tasks of increasing difficulty. We evaluate the performance of 17 models (both open- and closed-source) and find that while existing models can achieve over 80% accuracy on tasks related to vulnerability identification and classification, they still fall short on specific, more detailed vulnerability analysis tasks, with less than 30% accuracy, making it difficult to provide valuable auxiliary information for professional vulnerability mining. Our benchmark effectively evaluates the capabilities of various LLMs at different levels in the specific task of vulnerability detection, providing a foundation for future research and improvements in this critical area of code security. VulDetectBench is publicly available at https://github.com/Sweetaroo/VulDetectBench.
Abstract:Few-shot image classification aims to classify images from unseen novel classes with few samples. Recent works demonstrate that deep local descriptors exhibit enhanced representational capabilities compared to image-level features. However, most existing methods solely rely on either employing all local descriptors or directly utilizing partial descriptors, potentially resulting in the loss of crucial information. Moreover, these methods primarily emphasize the selection of query descriptors while overlooking support descriptors. In this paper, we propose a novel Task-Aware Adaptive Local Descriptors Selection Network (TALDS-Net), which exhibits the capacity for adaptive selection of task-aware support descriptors and query descriptors. Specifically, we compare the similarity of each local support descriptor with other local support descriptors to obtain the optimal support descriptor subset and then compare the query descriptors with the optimal support subset to obtain discriminative query descriptors. Extensive experiments demonstrate that our TALDS-Net outperforms state-of-the-art methods on both general and fine-grained datasets.