Paul G. Allen School of Computer Science & Engineering, University of Washington, Allen Institute for Artificial Intelligence
Abstract:Music understanding is a complex task that often requires reasoning over both structural and semantic elements of audio. We introduce BASS, designed to evaluate music understanding and reasoning in audio language models across four broad categories: structural segmentation, lyric transcription, musicological analysis, and artist collaboration. BASS comprises 2658 questions spanning 12 tasks, 1993 unique songs and covering over 138 hours of music from a wide range of genres and tracks, crafted to assess musicological knowledge and reasoning in real-world scenarios. We evaluate 14 open-source and frontier multimodal LMs, finding that even state-of-the-art models struggle on higher-level reasoning tasks such as structural segmentation and artist collaboration, while performing best on lyric transcription. Our analysis reveals that current models leverage linguistic priors effectively but remain limited in reasoning over musical structure, vocal, and musicological attributes. BASS provides an evaluation framework with widespread applications in music recommendation and search and has the potential to guide the development of audio LMs.
Abstract:Language models (LMs) are trained over sequences of tokens, whereas users interact with LMs via text. This mismatch gives rise to the partial token problem, which occurs when a user ends their prompt in the middle of the expected next-token, leading to distorted next-token predictions. Although this issue has been studied using arbitrary character prefixes, its prevalence and severity in realistic prompts respecting word boundaries remains underexplored. In this work, we identify three domains where token and "word" boundaries often do not line up: languages that do not use whitespace, highly compounding languages, and code. In Chinese, for example, up to 25% of word boundaries do not line up with token boundaries, making even natural, word-complete prompts susceptible to this problem. We systematically construct semantically natural prompts ending with a partial tokens; in experiments, we find that they comprise a serious failure mode: frontier LMs consistently place three orders of magnitude less probability on the correct continuation compared to when the prompt is "backed-off" to be token-aligned. This degradation does not diminish with scale and often worsens for larger models. Finally, we evaluate inference-time mitigations to the partial token problem and validate the effectiveness of recent exact solutions. Overall, we demonstrate the scale and severity of probability distortion caused by tokenization in realistic use cases, and provide practical recommentions for model inference providers.




Abstract:We introduce Bolmo, the first family of competitive fully open byte-level language models (LMs) at the 1B and 7B parameter scales. In contrast to prior research on byte-level LMs, which focuses predominantly on training from scratch, we train Bolmo by byteifying existing subword-level LMs. Byteification enables overcoming the limitations of subword tokenization - such as insufficient character understanding and efficiency constraints due to the fixed subword vocabulary - while performing at the level of leading subword-level LMs. Bolmo is specifically designed for byteification: our architecture resolves a mismatch between the expressivity of prior byte-level architectures and subword-level LMs, which makes it possible to employ an effective exact distillation objective between Bolmo and the source subword model. This allows for converting a subword-level LM to a byte-level LM by investing less than 1\% of a typical pretraining token budget. Bolmo substantially outperforms all prior byte-level LMs of comparable size, and outperforms the source subword-level LMs on character understanding and, in some cases, coding, while coming close to matching the original LMs' performance on other tasks. Furthermore, we show that Bolmo can achieve inference speeds competitive with subword-level LMs by training with higher token compression ratios, and can be cheaply and effectively post-trained by leveraging the existing ecosystem around the source subword-level LM. Our results finally make byte-level LMs a practical choice competitive with subword-level LMs across a wide set of use cases.
Abstract:We introduce Olmo 3, a family of state-of-the-art, fully-open language models at the 7B and 32B parameter scales. Olmo 3 model construction targets long-context reasoning, function calling, coding, instruction following, general chat, and knowledge recall. This release includes the entire model flow, i.e., the full lifecycle of the family of models, including every stage, checkpoint, data point, and dependency used to build it. Our flagship model, Olmo 3 Think 32B, is the strongest fully-open thinking model released to-date.
Abstract:We present an experimental recipe for studying the relationship between training data and language model (LM) behavior. We outline steps for intervening on data batches -- i.e., ``rewriting history'' -- and then retraining model checkpoints over that data to test hypotheses relating data to behavior. Our recipe breaks down such an intervention into stages that include selecting evaluation items from a benchmark that measures model behavior, matching relevant documents to those items, and modifying those documents before retraining and measuring the effects. We demonstrate the utility of our recipe through case studies on factual knowledge acquisition in LMs, using both cooccurrence statistics and information retrieval methods to identify documents that might contribute to knowledge learning. Our results supplement past observational analyses that link cooccurrence to model behavior, while demonstrating that extant methods for identifying relevant training documents do not fully explain an LM's ability to correctly answer knowledge questions. Overall, we outline a recipe that researchers can follow to test further hypotheses about how training data affects model behavior. Our code is made publicly available to promote future work.
Abstract:Developing large language models is expensive and involves making decisions with small experiments, typically by evaluating on large, multi-task evaluation suites. In this work, we analyze specific properties which make a benchmark more reliable for such decisions, and interventions to design higher-quality evaluation benchmarks. We introduce two key metrics that show differences in current benchmarks: signal, a benchmark's ability to separate better models from worse models, and noise, a benchmark's sensitivity to random variability between training steps. We demonstrate that benchmarks with a better signal-to-noise ratio are more reliable when making decisions at small scale, and those with less noise have lower scaling law prediction error. These results suggest that improving signal or noise will lead to more useful benchmarks, so we introduce three interventions designed to directly affect signal or noise. For example, we propose that switching to a metric that has better signal and noise (e.g., perplexity rather than accuracy) leads to better reliability and improved scaling law error. We also find that filtering noisy subtasks, to improve an aggregate signal-to-noise ratio, leads to more reliable multi-task evaluations. We also find that averaging the output of a model's intermediate checkpoints to reduce noise leads to consistent improvements. We conclude by recommending that those creating new benchmarks, or selecting which existing benchmarks to use, aim for high signal and low noise. We use 30 benchmarks for these experiments, and 375 open-weight language models from 60M to 32B parameters, resulting in a new, publicly available dataset of 900K evaluation benchmark results, totaling 200M instances.




Abstract:We introduce FlexOlmo, a new class of language models (LMs) that supports (1) distributed training without data sharing, where different model parameters are independently trained on closed datasets, and (2) data-flexible inference, where these parameters along with their associated data can be flexibly included or excluded from model inferences with no further training. FlexOlmo employs a mixture-of-experts (MoE) architecture where each expert is trained independently on closed datasets and later integrated through a new domain-informed routing without any joint training. FlexOlmo is trained on FlexMix, a corpus we curate comprising publicly available datasets alongside seven domain-specific sets, representing realistic approximations of closed sets. We evaluate models with up to 37 billion parameters (20 billion active) on 31 diverse downstream tasks. We show that a general expert trained on public data can be effectively combined with independently trained experts from other data owners, leading to an average 41% relative improvement while allowing users to opt out of certain data based on data licensing or permission requirements. Our approach also outperforms prior model merging methods by 10.1% on average and surpasses the standard MoE trained without data restrictions using the same training FLOPs. Altogether, this research presents a solution for both data owners and researchers in regulated industries with sensitive or protected data. FlexOlmo enables benefiting from closed data while respecting data owners' preferences by keeping their data local and supporting fine-grained control of data access during inference.
Abstract:We propose Legato, a new end-to-end transformer model for optical music recognition (OMR). Legato is the first large-scale pretrained OMR model capable of recognizing full-page or multi-page typeset music scores and the first to generate documents in ABC notation, a concise, human-readable format for symbolic music. Bringing together a pretrained vision encoder with an ABC decoder trained on a dataset of more than 214K images, our model exhibits the strong ability to generalize across various typeset scores. We conduct experiments on a range of datasets and demonstrate that our model achieves state-of-the-art performance. Given the lack of a standardized evaluation for end-to-end OMR, we comprehensively compare our model against the previous state of the art using a diverse set of metrics.
Abstract:Modern tokenizers employ deterministic algorithms to map text into a single "canonical" token sequence, yet the same string can be encoded as many non-canonical tokenizations using the tokenizer vocabulary. In this work, we investigate the robustness of LMs to text encoded with non-canonical tokenizations entirely unseen during training. Surprisingly, when evaluated across 20 benchmarks, we find that instruction-tuned models retain up to 93.4% of their original performance when given a randomly sampled tokenization, and 90.8% with character-level tokenization. We see that overall stronger models tend to be more robust, and robustness diminishes as the tokenization departs farther from the canonical form. Motivated by these results, we then identify settings where non-canonical tokenization schemes can *improve* performance, finding that character-level segmentation improves string manipulation and code understanding tasks by up to +14%, and right-aligned digit grouping enhances large-number arithmetic by +33%. Finally, we investigate the source of this robustness, finding that it arises in the instruction-tuning phase. We show that while both base and post-trained models grasp the semantics of non-canonical tokenizations (perceiving them as containing misspellings), base models try to mimic the imagined mistakes and degenerate into nonsensical output, while post-trained models are committed to fluent responses. Overall, our findings suggest that models are less tied to their tokenizer than previously believed, and demonstrate the promise of intervening on tokenization at inference time to boost performance.
Abstract:Tokenization is used almost universally by modern language models, enabling efficient text representation using multi-byte or multi-character tokens. However, prior work has shown that tokenization can introduce distortion into the model's generations. For example, users are often advised not to end their prompts with a space because it prevents the model from including the space as part of the next token. This Prompt Boundary Problem (PBP) also arises in languages such as Chinese and in code generation, where tokens often do not line up with syntactic boundaries. Additionally mismatching tokenizers often hinder model composition and interoperability. For example, it is not possible to directly ensemble models with different tokenizers due to their mismatching vocabularies. To address these issues, we present an inference-time method to convert any autoregressive LM with a BPE tokenizer into a character-level or byte-level LM, without changing its generative distribution at the text level. Our method efficient solves the PBP and is also able to unify the vocabularies of language models with different tokenizers, allowing one to ensemble LMs with different tokenizers at inference time as well as transfer the post-training from one model to another using proxy-tuning. We demonstrate in experiments that the ensemble and proxy-tuned models outperform their constituents on downstream evals.