Speaker diarization is the process of segmenting and clustering speech signals to identify different speakers in an audio recording.
The digitization of agricultural advisory services in India requires robust Automatic Speech Recognition (ASR) systems capable of accurately transcribing domain-specific terminology in multiple Indian languages. This paper presents a benchmarking framework for evaluating ASR performance in agricultural contexts across Hindi, Telugu, and Odia languages. We introduce evaluation metrics including Agriculture Weighted Word Error Rate (AWWER) and domain-specific utility scoring to complement traditional metrics. Our evaluation of 10,934 audio recordings, each transcribed by up to 10 ASR models, reveals performance variations across languages and models, with Hindi achieving the best overall performance (WER: 16.2%) while Odia presents the greatest challenges (best WER: 35.1%, achieved only with speaker diarization). We characterize audio quality challenges inherent to real-world agricultural field recordings and demonstrate that speaker diarization with best-speaker selection can substantially reduce WER for multi-speaker recordings (upto 66% depending on the proportion of multi-speaker audio). We identify recurring error patterns in agricultural terminology and provide practical recommendations for improving ASR systems in low-resource agricultural domains. The study establishes baseline benchmarks for future agricultural ASR development.
Interlingual subtitling, which translates subtitles of visual media into a target language, is essential for entertainment localization but has not yet been explored in machine translation. Although Large Language Models (LLMs) have significantly advanced the general capabilities of machine translation, the distinctive characteristics of subtitle texts pose persistent challenges in interlingual subtitling, particularly regarding semantic coherence, pronoun and terminology translation, and translation expressiveness. To address these issues, we present Hermes, an LLM-based automated subtitling framework. Hermes integrates three modules: Speaker Diarization, Terminology Identification, and Expressiveness Enhancement, which effectively tackle the above challenges. Experiments demonstrate that Hermes achieves state-of-the-art diarization performance and generates expressive, contextually coherent translations, thereby advancing research in interlingual subtitling.
Speaker diarization aims to segment audio recordings into regions corresponding to individual speakers. Although unsupervised speaker diarization is inherently challenging, the prospect of identifying speaker regions without pretraining or weak supervision motivates research on clustering techniques. In this work, we share the notable observation that measuring multiple kernel similarities of speaker embeddings to thereafter craft a sparse graph for spectral clustering in a principled manner is sufficient to achieve state-of-the-art performances in a fully unsupervised setting. Specifically, we consider four polynomial kernels and a degree one arccosine kernel to measure similarities in speaker embeddings, using which sparse graphs are constructed in a principled manner to emphasize local similarities. Experiments show the proposed approach excels in unsupervised speaker diarization over a variety of challenging environments in the DIHARD-III, AMI, and VoxConverse corpora. To encourage further research, our implementations are available at https://github.com/nikhilraghav29/MK-SGC-SC.
The present benchmarks for testing the audio modality of multimodal large language models concentrate on testing various audio tasks such as speaker diarization or gender identification in isolation. Whether a multimodal model can answer the questions that require reasoning skills to combine audio tasks of different categories, cannot be verified with their use. To address this issue, we propose Audio Reasoning Tasks (ART), a new benchmark for assessing the ability of multimodal models to solve problems that require reasoning over audio signal.
Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a major challenge. While some approaches achieve strong performance when fine-tuned on specific domains, few systems generalize well across out-of-domain datasets. Our prior work, Diarization-Conditioned Whisper (DiCoW), leverages speaker diarization outputs as conditioning information and, with minimal fine-tuning, demonstrated strong multilingual and multi-domain performance. In this paper, we address a key limitation of DiCoW: ambiguity in Silence-Target-Non-target-Overlap (STNO) masks, where two or more fully overlapping speakers may have nearly identical conditioning despite differing transcriptions. We introduce SE-DiCoW (Self-Enrolled Diarization-Conditioned Whisper), which uses diarization output to locate an enrollment segment anywhere in the conversation where the target speaker is most active. This enrollment segment is used as fixed conditioning via cross-attention at each encoder layer. We further refine DiCoW with improved data segmentation, model initialization, and augmentation. Together, these advances yield substantial gains: SE-DiCoW reduces macro-averaged tcpWER by 52.4% relative to the original DiCoW on the EMMA MT-ASR benchmark.
Accurate transcription and speaker diarization of child-adult spoken interactions are crucial for developmental and clinical research. However, manual annotation is time-consuming and challenging to scale. Existing automated systems typically rely on cascaded speaker diarization and speech recognition pipelines, which can lead to error propagation. This paper presents a unified end-to-end framework that extends the Whisper encoder-decoder architecture to jointly model ASR and child-adult speaker role diarization. The proposed approach integrates: (i) a serialized output training scheme that emits speaker tags and start/end timestamps, (ii) a lightweight frame-level diarization head that enhances speaker-discriminative encoder representations, (iii) diarization-guided silence suppression for improved temporal precision, and (iv) a state-machine-based forced decoding procedure that guarantees structurally valid outputs. Comprehensive evaluations on two datasets demonstrate consistent and substantial improvements over two cascaded baselines, achieving lower multi-talker word error rates and demonstrating competitive diarization accuracy across both Whisper-small and Whisper-large models. These findings highlight the effectiveness and practical utility of the proposed joint modeling framework for generating reliable, speaker-attributed transcripts of child-adult interactions at scale. The code and model weights are publicly available
This report presents VibeVoice-ASR, a general-purpose speech understanding framework built upon VibeVoice, designed to address the persistent challenges of context fragmentation and multi-speaker complexity in long-form audio (e.g., meetings, podcasts) that remain despite recent advancements in short-form speech recognition. Unlike traditional pipelined approaches that rely on audio chunking, VibeVoice-ASRsupports single-pass processing for up to 60 minutes of audio. It unifies Automatic Speech Recognition, Speaker Diarization, and Timestamping into a single end-to-end generation task. In addition, VibeVoice-ASR supports over 50 languages, requires no explicit language setting, and natively handles code-switching within and across utterances. Furthermore, we introduce a prompt-based context injection mechanism that allows users to supply customized conetxt, significantly improving accuracy on domain-specific terminology and polyphonic character disambiguation.
Sound capture by microphone arrays opens the possibility to exploit spatial, in addition to spectral, information for diarization and signal enhancement, two important tasks in meeting transcription. However, there is no one-to-one mapping of positions in space to speakers if speakers move. Here, we address this by proposing a novel joint spatial and spectral mixture model, whose two submodels are loosely coupled by modeling the relationship between speaker and position index probabilistically. Thus, spatial and spectral information can be jointly exploited, while at the same time allowing for speakers speaking from different positions. Experiments on the LibriCSS data set with simulated speaker position changes show great improvements over tightly coupled subsystems.
This study investigates the use of computational audio analysis to examine ideological narratives in Nazi propaganda films. Employing a three-step pipeline, speaker diarization, audio transcription and psycholinguistic analysis, it reveals ideological patterns in characters. Despite current issues with speaker diarization, the methodology provides insights into character traits and propaganda narratives, suggesting scalable applications.
We present TagSpeech, a unified LLM-based framework that utilizes Temporal Anchor Grounding for joint multi-speaker ASR and diarization. The framework is built on two key designs: (1) decoupled semantic and speaker streams fine-tuned via Serialized Output Training (SOT) to learn turn-taking dynamics; and (2) an interleaved time anchor mechanism that not only supports fine-grained timestamp prediction but also acts as a synchronization signal between semantic understanding and speaker tracking. Compared to previous works that primarily focus on speaker-attributed ASR or implicit diarization, TagSpeech addresses the challenge of fine-grained speaker-content alignment and explicitly models "who spoke what and when" in an end-to-end manner. Experiments on AMI and AliMeeting benchmarks demonstrate that our method achieves consistent improvements in Diarization Error Rate (DER) over strong end-to-end baselines, including Qwen-Omni and Gemini, particularly in handling complex speech overlaps. Moreover, TagSpeech employs a parameter-efficient training paradigm in which the LLM backbone is frozen and only lightweight projectors are trained, resulting in strong performance with low computational cost.