Abstract:The present paper evaluates the learning behaviour of a transformer-based neural network with regard to an irregular inflectional paradigm. We apply the paradigm cell filling problem to irregular patterns. We approach this problem using the morphological reinflection task and model it as a character sequence-to-sequence learning problem. The test case under investigation are irregular verbs in Spanish. Besides many regular verbs in Spanish L-shaped verbs the first person singular indicative stem irregularly matches the subjunctive paradigm, while other indicative forms remain unaltered. We examine the role of frequency during learning and compare models under differing input frequency conditions. We train the model on a corpus of Spanish with a realistic distribution of regular and irregular verbs to compare it with models trained on input with augmented distributions of (ir)regular words. We explore how the neural models learn this L-shaped pattern using post-hoc analyses. Our experiments show that, across frequency conditions, the models are surprisingly capable of learning the irregular pattern. Furthermore, our post-hoc analyses reveal the possible sources of errors. All code and data are available at \url{https://anonymous.4open.science/r/modeling_spanish_acl-7567/} under MIT license.
Abstract:This paper investigates the ethical implications of aligning Large Language Models (LLMs) with financial optimization, through the case study of GreedLlama, a model fine-tuned to prioritize economically beneficial outcomes. By comparing GreedLlama's performance in moral reasoning tasks to a base Llama2 model, our results highlight a concerning trend: GreedLlama demonstrates a marked preference for profit over ethical considerations, making morally appropriate decisions at significantly lower rates than the base model in scenarios of both low and high moral ambiguity. In low ambiguity situations, GreedLlama's ethical decisions decreased to 54.4%, compared to the base model's 86.9%, while in high ambiguity contexts, the rate was 47.4% against the base model's 65.1%. These findings emphasize the risks of single-dimensional value alignment in LLMs, underscoring the need for integrating broader ethical values into AI development to ensure decisions are not solely driven by financial incentives. The study calls for a balanced approach to LLM deployment, advocating for the incorporation of ethical considerations in models intended for business applications, particularly in light of the absence of regulatory oversight.
Abstract:Current diffusion-based video editing primarily focuses on structure-preserved editing by utilizing various dense correspondences to ensure temporal consistency and motion alignment. However, these approaches are often ineffective when the target edit involves a shape change. To embark on video editing with shape change, we explore customized video subject swapping in this work, where we aim to replace the main subject in a source video with a target subject having a distinct identity and potentially different shape. In contrast to previous methods that rely on dense correspondences, we introduce the VideoSwap framework that exploits semantic point correspondences, inspired by our observation that only a small number of semantic points are necessary to align the subject's motion trajectory and modify its shape. We also introduce various user-point interactions (\eg, removing points and dragging points) to address various semantic point correspondence. Extensive experiments demonstrate state-of-the-art video subject swapping results across a variety of real-world videos.
Abstract:Recent research has highlighted that natural language processing (NLP) systems exhibit a bias against African American speakers. The bias errors are often caused by poor representation of linguistic features unique to African American English (AAE), due to the relatively low probability of occurrence of many such features in training data. We present a workflow to overcome such bias in the case of habitual "be". Habitual "be" is isomorphic, and therefore ambiguous, with other forms of "be" found in both AAE and other varieties of English. This creates a clear challenge for bias in NLP technologies. To overcome the scarcity, we employ a combination of rule-based filters and data augmentation that generate a corpus balanced between habitual and non-habitual instances. With this balanced corpus, we train unbiased machine learning classifiers, as demonstrated on a corpus of AAE transcribed texts, achieving .65 F$_1$ score disambiguating habitual "be".
Abstract:The average predictability (aka informativity) of a word in context has been shown to condition word duration (Seyfarth, 2014). All else being equal, words that tend to occur in more predictable environments are shorter than words that tend to occur in less predictable environments. One account of the informativity effect on duration is that the acoustic details of word reduction are stored as part of a word's representation. Other research has argued that predictability effects are tied to prosodic structure in integral ways. With the aim of assessing a potential prosodic basis for informativity effects in speech production, this study extends past work in two directions; it investigated informativity effects in another large language, Mandarin Chinese, and broadened the study beyond word duration to additional acoustic dimensions, pitch and intensity, known to index prosodic prominence. The acoustic information of content words was extracted from a large telephone conversation speech corpus with over 400,000 tokens and 6,000 word types spoken by 1,655 individuals and analyzed for the effect of informativity using frequency statistics estimated from a 431 million word subtitle corpus. Results indicated that words with low informativity have shorter durations, replicating the effect found in English. In addition, informativity had significant effects on maximum pitch and intensity, two phonetic dimensions related to prosodic prominence. Extending this interpretation, these results suggest that informativity is closely linked to prosodic prominence, and that lexical representation of a word includes phonetic details associated with its prosodic prominence. In other words, the lexicon absorbs prosodic influences on speech production.
Abstract:Dense captioning is a newly emerging computer vision topic for understanding images with dense language descriptions. The goal is to densely detect visual concepts (e.g., objects, object parts, and interactions between them) from images, labeling each with a short descriptive phrase. We identify two key challenges of dense captioning that need to be properly addressed when tackling the problem. First, dense visual concept annotations in each image are associated with highly overlapping target regions, making accurate localization of each visual concept challenging. Second, the large amount of visual concepts makes it hard to recognize each of them by appearance alone. We propose a new model pipeline based on two novel ideas, joint inference and context fusion, to alleviate these two challenges. We design our model architecture in a methodical manner and thoroughly evaluate the variations in architecture. Our final model, compact and efficient, achieves state-of-the-art accuracy on Visual Genome for dense captioning with a relative gain of 73\% compared to the previous best algorithm. Qualitative experiments also reveal the semantic capabilities of our model in dense captioning.
Abstract:With the widespread availability of cellphones and cameras that have GPS capabilities, it is common for images being uploaded to the Internet today to have GPS coordinates associated with them. In addition to research that tries to predict GPS coordinates from visual features, this also opens up the door to problems that are conditioned on the availability of GPS coordinates. In this work, we tackle the problem of performing image classification with location context, in which we are given the GPS coordinates for images in both the train and test phases. We explore different ways of encoding and extracting features from the GPS coordinates, and show how to naturally incorporate these features into a Convolutional Neural Network (CNN), the current state-of-the-art for most image classification and recognition problems. We also show how it is possible to simultaneously learn the optimal pooling radii for a subset of our features within the CNN framework. To evaluate our model and to help promote research in this area, we identify a set of location-sensitive concepts and annotate a subset of the Yahoo Flickr Creative Commons 100M dataset that has GPS coordinates with these concepts, which we make publicly available. By leveraging location context, we are able to achieve almost a 7% gain in mean average precision.
Abstract:In this paper, we propose to learn temporal embeddings of video frames for complex video analysis. Large quantities of unlabeled video data can be easily obtained from the Internet. These videos possess the implicit weak label that they are sequences of temporally and semantically coherent images. We leverage this information to learn temporal embeddings for video frames by associating frames with the temporal context that they appear in. To do this, we propose a scheme for incorporating temporal context based on past and future frames in videos, and compare this to other contextual representations. In addition, we show how data augmentation using multi-resolution samples and hard negatives helps to significantly improve the quality of the learned embeddings. We evaluate various design decisions for learning temporal embeddings, and show that our embeddings can improve performance for multiple video tasks such as retrieval, classification, and temporal order recovery in unconstrained Internet video.