Abstract:Despite speaking mutually intelligible varieties of the same language, speakers of Tajik Persian, written in a modified Cyrillic alphabet, cannot read Iranian and Afghan texts written in the Perso-Arabic script. As the vast majority of Persian text on the Internet is written in Perso-Arabic, monolingual Tajik speakers are unable to interface with the Internet in any meaningful way. Due to overwhelming similarity between the formal registers of these dialects and the scarcity of Tajik-Farsi parallel data, machine transliteration has been proposed as more a practical and appropriate solution than machine translation. This paper presents a transformer-based G2P approach to Tajik-Farsi transliteration, achieving chrF++ scores of 58.70 (Farsi to Tajik) and 74.20 (Tajik to Farsi) on novel digraphic datasets, setting a comparable baseline metric for future work. Our results also demonstrate the non-trivial difficulty of this task in both directions. We also provide an overview of the differences between the two scripts and the challenges they present, so as to aid future efforts in Tajik-Farsi transliteration.
Abstract:The present paper evaluates the learning behaviour of a transformer-based neural network with regard to an irregular inflectional paradigm. We apply the paradigm cell filling problem to irregular patterns. We approach this problem using the morphological reinflection task and model it as a character sequence-to-sequence learning problem. The test case under investigation are irregular verbs in Spanish. Besides many regular verbs in Spanish L-shaped verbs the first person singular indicative stem irregularly matches the subjunctive paradigm, while other indicative forms remain unaltered. We examine the role of frequency during learning and compare models under differing input frequency conditions. We train the model on a corpus of Spanish with a realistic distribution of regular and irregular verbs to compare it with models trained on input with augmented distributions of (ir)regular words. We explore how the neural models learn this L-shaped pattern using post-hoc analyses. Our experiments show that, across frequency conditions, the models are surprisingly capable of learning the irregular pattern. Furthermore, our post-hoc analyses reveal the possible sources of errors. All code and data are available at \url{https://anonymous.4open.science/r/modeling_spanish_acl-7567/} under MIT license.