Abstract:In recent times training Language Models (LMs) have relied on computationally heavy training over massive datasets which makes this training process extremely laborious. In this paper we propose a novel method for numerically evaluating text quality in large unlabelled NLP datasets in a model agnostic manner to assign the text instances a "quality score". By proposing the text quality metric, the paper establishes a framework to identify and eliminate low-quality text instances, leading to improved training efficiency for LM models. Experimental results over multiple models and datasets demonstrate the efficacy of this approach, showcasing substantial gains in training effectiveness and highlighting the potential for resource-efficient LM training. For example, we observe an absolute accuracy improvement of 0.9% averaged over 14 downstream evaluation tasks for multiple LM models while using 40% lesser data and training 42% faster when training on the OpenWebText dataset and 0.8% average absolute accuracy improvement while using 20% lesser data and training 21% faster on the Wikipedia dataset.
Abstract:Code datasets, often collected from diverse and uncontrolled sources such as GitHub, potentially suffer from quality issues, thereby affecting the performance and training efficiency of Large Language Models (LLMs) optimized for code generation. Previous studies demonstrated the benefit of using embedding spaces for data pruning, but they mainly focused on duplicate removal or increasing variety, and in other modalities, such as images. Our work focuses on using embeddings to identify and remove "low-quality" code data. First, we explore features of "low-quality" code in embedding space, through the use of synthetic corruptions. Armed with this knowledge, we devise novel pruning metrics that operate in embedding space to identify and remove low-quality entries in the Stack dataset. We demonstrate the benefits of this synthetic corruption informed pruning (SCIP) approach on the well-established HumanEval and MBPP benchmarks, outperforming existing embedding-based methods. Importantly, we achieve up to a 3% performance improvement over no pruning, thereby showing the promise of insights from synthetic corruptions for data pruning.
Abstract:As Machine Learning (ML) systems continue to grow, the demand for relevant and comprehensive datasets becomes imperative. There is limited study on the challenges of data acquisition due to ad-hoc processes and lack of consistent methodologies. We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets, transparent pricing, standardized data formats. With the objective of inciting participation from the data-centric AI community, we then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers. The benchmark was released as a part of DataPerf. Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in ML.
Abstract:Training and deploying large machine learning (ML) models is time-consuming and requires significant distributed computing infrastructures. Based on real-world large model training on datacenter-scale infrastructures, we show 14~32% of all GPU hours are spent on communication with no overlapping computation. To minimize the outstanding communication latency, in this work, we develop an agile performance modeling framework to guide parallelization and hardware-software co-design strategies. Using the suite of real-world large ML models on state-of-the-art GPU training hardware, we demonstrate 2.24x and 5.27x throughput improvement potential for pre-training and inference scenarios, respectively.
Abstract:Vision-Language Models (VLMs) are pretrained on large, diverse, and noisy web-crawled datasets. This underscores the critical need for dataset pruning, as the quality of these datasets is strongly correlated with the performance of VLMs on downstream tasks. Using CLIPScore from a pretrained model to only train models using highly-aligned samples is one of the most successful methods for pruning.We argue that this approach suffers from multiple limitations including: 1) false positives due to spurious correlations captured by the pretrained CLIP model, 2) false negatives due to poor discrimination between hard and bad samples, and 3) biased ranking towards samples similar to the pretrained CLIP dataset. We propose a pruning method, SIEVE, that employs synthetic captions generated by image-captioning models pretrained on small, diverse, and well-aligned image-text pairs to evaluate the alignment of noisy image-text pairs. To bridge the gap between the limited diversity of generated captions and the high diversity of alternative text (alt-text), we estimate the semantic textual similarity in the embedding space of a language model pretrained on billions of sentences. Using DataComp, a multimodal dataset filtering benchmark, we achieve state-of-the-art performance on the large scale pool, and competitive results on the medium scale pool, surpassing CLIPScore-based filtering by 1.7% and 2.6% on average, on 38 downstream tasks.
Abstract:Mixture-of-Experts (MoE) models have recently gained steam in achieving the state-of-the-art performance in a wide range of tasks in computer vision and natural language processing. They effectively expand the model capacity while incurring a minimal increase in computation cost during training. However, deploying such models for inference is difficult due to their large model size and complex communication pattern. In this work, we provide a characterization of two MoE workloads, namely Language Modeling (LM) and Machine Translation (MT) and identify their sources of inefficiencies at deployment. We propose three optimization techniques to mitigate sources of inefficiencies, namely (1) Dynamic gating, (2) Expert Buffering, and (3) Expert load balancing. We show that dynamic gating improves execution time by 1.25-4$\times$ for LM, 2-5$\times$ for MT Encoder and 1.09-1.5$\times$ for MT Decoder. It also reduces memory usage by up to 1.36$\times$ for LM and up to 1.1$\times$ for MT. We further propose Expert Buffering, a new caching mechanism that only keeps hot, active experts in GPU memory while buffering the rest in CPU memory. This reduces static memory allocation by 1.47$\times$. We finally propose a load balancing methodology that provides additional robustness to the workload. The code will be open-sourced upon acceptance.
Abstract:Deep learning recommendation systems serve personalized content under diverse tail-latency targets and input-query loads. In order to do so, state-of-the-art recommendation models rely on terabyte-scale embedding tables to learn user preferences over large bodies of contents. The reliance on a fixed embedding representation of embedding tables not only imposes significant memory capacity and bandwidth requirements but also limits the scope of compatible system solutions. This paper challenges the assumption of fixed embedding representations by showing how synergies between embedding representations and hardware platforms can lead to improvements in both algorithmic- and system performance. Based on our characterization of various embedding representations, we propose a hybrid embedding representation that achieves higher quality embeddings at the cost of increased memory and compute requirements. To address the system performance challenges of the hybrid representation, we propose MP-Rec -- a co-design technique that exploits heterogeneity and dynamic selection of embedding representations and underlying hardware platforms. On real system hardware, we demonstrate how matching custom accelerators, i.e., GPUs, TPUs, and IPUs, with compatible embedding representations can lead to 16.65x performance speedup. Additionally, in query-serving scenarios, MP-Rec achieves 2.49x and 3.76x higher correct prediction throughput and 0.19% and 0.22% better model quality on a CPU-GPU system for the Kaggle and Terabyte datasets, respectively.
Abstract:Scale has been a major driving force in improving machine learning performance, and understanding scaling laws is essential for strategic planning for a sustainable model quality performance growth, long-term resource planning and developing efficient system infrastructures to support large-scale models. In this paper, we study empirical scaling laws for DLRM style recommendation models, in particular Click-Through Rate (CTR). We observe that model quality scales with power law plus constant in model size, data size and amount of compute used for training. We characterize scaling efficiency along three different resource dimensions, namely data, parameters and compute by comparing the different scaling schemes along these axes. We show that parameter scaling is out of steam for the model architecture under study, and until a higher-performing model architecture emerges, data scaling is the path forward. The key research questions addressed by this study include: Does a recommendation model scale sustainably as predicted by the scaling laws? Or are we far off from the scaling law predictions? What are the limits of scaling? What are the implications of the scaling laws on long-term hardware/system development?
Abstract:Machine learning (ML) research has generally focused on models, while the most prominent datasets have been employed for everyday ML tasks without regard for the breadth, difficulty, and faithfulness of these datasets to the underlying problem. Neglecting the fundamental importance of datasets has caused major problems involving data cascades in real-world applications and saturation of dataset-driven criteria for model quality, hindering research growth. To solve this problem, we present DataPerf, a benchmark package for evaluating ML datasets and dataset-working algorithms. We intend it to enable the "data ratchet," in which training sets will aid in evaluating test sets on the same problems, and vice versa. Such a feedback-driven strategy will generate a virtuous loop that will accelerate development of data-centric AI. The MLCommons Association will maintain DataPerf.
Abstract:Data is fundamental to machine learning-based products and services and is considered strategic due to its externalities for businesses, governments, non-profits, and more generally for society. It is renowned that the value of organizations (businesses, government agencies and programs, and even industries) scales with the volume of available data. What is often less appreciated is that the data value in making useful organizational predictions will range widely and is prominently a function of data characteristics and underlying algorithms. In this research, our goal is to study how the value of data changes over time and how this change varies across contexts and business areas (e.g. next word prediction in the context of history, sports, politics). We focus on data from Reddit.com and compare the value's time-dependency across various Reddit topics (Subreddits). We make this comparison by measuring the rate at which user-generated text data loses its relevance to the algorithmic prediction of conversations. We show that different subreddits have different rates of relevance decline over time. Relating the text topics to various business areas of interest, we argue that competing in a business area in which data value decays rapidly alters strategies to acquire competitive advantage. When data value decays rapidly, access to a continuous flow of data will be more valuable than access to a fixed stock of data. In this kind of setting, improving user engagement and increasing user-base help creating and maintaining a competitive advantage.