Abstract:Instrumental variables (IV) estimation is a fundamental method in econometrics and statistics for estimating causal effects in the presence of unobserved confounding. However, challenges such as untestable model assumptions and poor finite sample properties have undermined its reliability in practice. Viewing common issues in IV estimation as distributional uncertainties, we propose DRIVE, a distributionally robust framework of the classical IV estimation method. When the ambiguity set is based on a Wasserstein distance, DRIVE minimizes a square root ridge regularized variant of the two stage least squares (TSLS) objective. We develop a novel asymptotic theory for this regularized regression estimator based on the square root ridge, showing that it achieves consistency without requiring the regularization parameter to vanish. This result follows from a fundamental property of the square root ridge, which we call ``delayed shrinkage''. This novel property, which also holds for a class of generalized method of moments (GMM) estimators, ensures that the estimator is robust to distributional uncertainties that persist in large samples. We further derive the asymptotic distribution of Wasserstein DRIVE and propose data-driven procedures to select the regularization parameter based on theoretical results. Simulation studies confirm the superior finite sample performance of Wasserstein DRIVE. Thanks to its regularization and robustness properties, Wasserstein DRIVE could be preferable in practice, particularly when the practitioner is uncertain about model assumptions or distributional shifts in data.
Abstract:We propose a variant of the Shapley value, the group Shapley value, to interpret counterfactual simulations in structural economic models by quantifying the importance of different components. Our framework compares two sets of parameters, partitioned into multiple groups, and applying group Shapley value decomposition yields unique additive contributions to the changes between these sets. The relative contributions sum to one, enabling us to generate an importance table that is as easily interpretable as a regression table. The group Shapley value can be characterized as the solution to a constrained weighted least squares problem. Using this property, we develop robust decomposition methods to address scenarios where inputs for the group Shapley value are missing. We first apply our methodology to a simple Roy model and then illustrate its usefulness by revisiting two published papers.
Abstract:Data valuation has emerged as a powerful framework to quantify the contribution of each datum to the training of a particular machine learning model. However, it is crucial to recognize that the quality of various cells within a single data point can vary greatly in practice. For example, even in the case of an abnormal data point, not all cells are necessarily noisy. The single scalar valuation assigned by existing methods blurs the distinction between noisy and clean cells of a data point, thereby compromising the interpretability of the valuation. In this paper, we propose 2D-OOB, an out-of-bag estimation framework for jointly determining helpful (or detrimental) samples, as well as the particular cells that drive them. Our comprehensive experiments demonstrate that 2D-OOB achieves state-of-the-art performance across multiple use cases, while being exponentially faster. 2D-OOB excels in detecting and rectifying fine-grained outliers at the cell level, as well as localizing backdoor triggers in data poisoning attacks.
Abstract:Evaluating the contribution of individual data points to a model's prediction is critical for interpreting model predictions and improving model performance. Existing data contribution methods have been applied to various data types, including tabular data, images, and texts; however, their primary focus has been on i.i.d. settings. Despite the pressing need for principled approaches tailored to time series datasets, the problem of estimating data contribution in such settings remains unexplored, possibly due to challenges associated with handling inherent temporal dependencies. This paper introduces TimeInf, a data contribution estimation method for time-series datasets. TimeInf uses influence functions to attribute model predictions to individual time points while preserving temporal structures. Our extensive empirical results demonstrate that TimeInf outperforms state-of-the-art methods in identifying harmful anomalies and helpful time points for forecasting. Additionally, TimeInf offers intuitive and interpretable attributions of data values, allowing us to easily distinguish diverse anomaly patterns through visualizations.
Abstract:A common way to evaluate a dataset in ML involves training a model on this dataset and assessing the model's performance on a test set. However, this approach has two issues: (1) it may incentivize undesirable data manipulation in data marketplaces, as the self-interested data providers seek to modify the dataset to maximize their evaluation scores; (2) it may select datasets that overfit to potentially small test sets. We propose a new data valuation method that provably guarantees the following: data providers always maximize their expected score by truthfully reporting their observed data. Any manipulation of the data, including but not limited to data duplication, adding random data, data removal, or re-weighting data from different groups, cannot increase their expected score. Our method, following the paradigm of proper scoring rules, measures the pointwise mutual information (PMI) of the test dataset and the evaluated dataset. However, computing the PMI of two datasets is challenging. We introduce a novel PMI measuring method that greatly improves tractability within Bayesian machine learning contexts. This is accomplished through a new characterization of PMI that relies solely on the posterior probabilities of the model parameter at an arbitrarily selected value. Finally, we support our theoretical results with simulations and further test the effectiveness of our data valuation method in identifying the top datasets among multiple data providers. Interestingly, our method outperforms the standard approach of selecting datasets based on the trained model's test performance, suggesting that our truthful valuation score can also be more robust to overfitting.
Abstract:Data Shapley provides a principled approach to data valuation and plays a crucial role in data-centric machine learning (ML) research. Data selection is considered a standard application of Data Shapley. However, its data selection performance has shown to be inconsistent across settings in the literature. This study aims to deepen our understanding of this phenomenon. We introduce a hypothesis testing framework and show that Data Shapley's performance can be no better than random selection without specific constraints on utility functions. We identify a class of utility functions, monotonically transformed modular functions, within which Data Shapley optimally selects data. Based on this insight, we propose a heuristic for predicting Data Shapley's effectiveness in data selection tasks. Our experiments corroborate these findings, adding new insights into when Data Shapley may or may not succeed.
Abstract:As Machine Learning (ML) systems continue to grow, the demand for relevant and comprehensive datasets becomes imperative. There is limited study on the challenges of data acquisition due to ad-hoc processes and lack of consistent methodologies. We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets, transparent pricing, standardized data formats. With the objective of inciting participation from the data-centric AI community, we then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers. The benchmark was released as a part of DataPerf. Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in ML.
Abstract:Quantifying the impact of training data points is crucial for understanding the outputs of machine learning models and for improving the transparency of the AI pipeline. The influence function is a principled and popular data attribution method, but its computational cost often makes it challenging to use. This issue becomes more pronounced in the setting of large language models and text-to-image models. In this work, we propose DataInf, an efficient influence approximation method that is practical for large-scale generative AI models. Leveraging an easy-to-compute closed-form expression, DataInf outperforms existing influence computation algorithms in terms of computational and memory efficiency. Our theoretical analysis shows that DataInf is particularly well-suited for parameter-efficient fine-tuning techniques such as LoRA. Through systematic empirical evaluations, we show that DataInf accurately approximates influence scores and is orders of magnitude faster than existing methods. In applications to RoBERTa-large, Llama-2-13B-chat, and stable-diffusion-v1.5 models, DataInf effectively identifies the most influential fine-tuning examples better than other approximate influence scores. Moreover, it can help to identify which data points are mislabeled.
Abstract:Assessing the quality and impact of individual data points is critical for improving model performance and mitigating undesirable biases within the training dataset. Several data valuation algorithms have been proposed to quantify data quality, however, there lacks a systemic and standardized benchmarking system for data valuation. In this paper, we introduce OpenDataVal, an easy-to-use and unified benchmark framework that empowers researchers and practitioners to apply and compare various data valuation algorithms. OpenDataVal provides an integrated environment that includes (i) a diverse collection of image, natural language, and tabular datasets, (ii) implementations of nine different state-of-the-art data valuation algorithms, and (iii) a prediction model API that can import any models in scikit-learn. Furthermore, we propose four downstream machine learning tasks for evaluating the quality of data values. We perform benchmarking analysis using OpenDataVal, quantifying and comparing the efficacy of state-of-the-art data valuation approaches. We find that no single algorithm performs uniformly best across all tasks, and an appropriate algorithm should be employed for a user's downstream task. OpenDataVal is publicly available at https://opendataval.github.io with comprehensive documentation. Furthermore, we provide a leaderboard where researchers can evaluate the effectiveness of their own data valuation algorithms.
Abstract:Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of model improvement on performance in different subpopulations, and has the potential to inform the development of more equitable and responsible machine learning models.