Video quality assessment is a computer vision task aiming to mimic video-based human subjective perception. The goal is to produce a MOS score, where a higher score indicates better perceptual quality. Some well-known benchmarks for this task are KoNViD-1k, LIVE VQC, YouTube UGC, and LSVQ. SROCC/PLCC/RMSE are usually used to evaluate the performance of different models.
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
Language-referred audio-visual segmentation (Ref-AVS) aims to segment target objects described by natural language by jointly reasoning over video, audio, and text. Beyond generating segmentation masks, providing rich and interpretable diagnoses of mask quality remains largely underexplored. In this work, we introduce Mask Quality Assessment in the Ref-AVS context (MQA-RefAVS), a new task that evaluates the quality of candidate segmentation masks without relying on ground-truth annotations as references at inference time. Given audio-visual-language inputs and each provided segmentation mask, the task requires estimating its IoU with the unobserved ground truth, identifying the corresponding error type, and recommending an actionable quality-control decision. To support this task, we construct MQ-RAVSBench, a benchmark featuring diverse and representative mask error modes that span both geometric and semantic issues. We further propose MQ-Auditor, a multimodal large language model (MLLM)-based auditor that explicitly reasons over multimodal cues and mask information to produce quantitative and qualitative mask quality assessments. Extensive experiments demonstrate that MQ-Auditor outperforms strong open-source and commercial MLLMs and can be integrated with existing Ref-AVS systems to detect segmentation failures and support downstream segmentation improvement. Data and codes will be released at https://github.com/jasongief/MQA-RefAVS.
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
Digital video is central to communication, education, and entertainment, but without audio description (AD), blind and low-vision audiences are excluded. While crowdsourced platforms and vision-language-models (VLMs) expand AD production, quality is rarely checked systematically. Existing evaluations rely on NLP metrics and short-clip guidelines, leaving questions about what constitutes quality for full-length content and how to assess it at scale. To address these questions, we first developed a multi-dimensional assessment framework for uninterrupted, full-length video, grounded in professional guidelines and refined by accessibility specialists. Second, we integrated this framework into a comprehensive methodological workflow, utilizing Item Response Theory, to assess the proficiency of VLM and human raters against expert-established ground truth. Findings suggest that while VLMs can approximate ground-truth ratings with high alignment, their reasoning was found to be less reliable and actionable than that of human respondents. These insights show the potential of hybrid evaluation systems that leverage VLMs alongside human oversight, offering a path towards scalable AD quality control.
State-of-the-art text-to-video generation models such as Sora 2 and Veo 3 can now produce high-fidelity videos with synchronized audio directly from a textual prompt, marking a new milestone in multi-modal generation. However, evaluating such tri-modal outputs remains an unsolved challenge. Human evaluation is reliable but costly and difficult to scale, while traditional automatic metrics, such as FVD, CLAP, and ViCLIP, focus on isolated modality pairs, struggle with complex prompts, and provide limited interpretability. Omni-modal large language models (omni-LLMs) present a promising alternative: they naturally process audio, video, and text, support rich reasoning, and offer interpretable chain-of-thought feedback. Driven by this, we introduce Omni-Judge, a study assessing whether omni-LLMs can serve as human-aligned judges for text-conditioned audio-video generation. Across nine perceptual and alignment metrics, Omni-Judge achieves correlation comparable to traditional metrics and excels on semantically demanding tasks such as audio-text alignment, video-text alignment, and audio-video-text coherence. It underperforms on high-FPS perceptual metrics, including video quality and audio-video synchronization, due to limited temporal resolution. Omni-Judge provides interpretable explanations that expose semantic or physical inconsistencies, enabling practical downstream uses such as feedback-based refinement. Our findings highlight both the potential and current limitations of omni-LLMs as unified evaluators for multi-modal generation.
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
Large multimodal models (LMMs) have demonstrated outstanding capabilities in various visual perception tasks, which has in turn made the evaluation of LMMs significant. However, the capability of video aesthetic quality assessment, which is a fundamental ability for human, remains underexplored for LMMs. To address this, we introduce VideoAesBench, a comprehensive benchmark for evaluating LMMs' understanding of video aesthetic quality. VideoAesBench has several significant characteristics: (1) Diverse content including 1,804 videos from multiple video sources including user-generated (UGC), AI-generated (AIGC), compressed, robotic-generated (RGC), and game videos. (2) Multiple question formats containing traditional single-choice questions, multi-choice questions, True or False questions, and a novel open-ended questions for video aesthetics description. (3) Holistic video aesthetics dimensions including visual form related questions from 5 aspects, visual style related questions from 4 aspects, and visual affectiveness questions from 3 aspects. Based on VideoAesBench, we benchmark 23 open-source and commercial large multimodal models. Our findings show that current LMMs only contain basic video aesthetics perception ability, their performance remains incomplete and imprecise. We hope our VideoAesBench can be served as a strong testbed and offer insights for explainable video aesthetics assessment.
Recent advances in text-to-video generation have produced visually compelling results, yet it remains unclear whether these models encode geographically equitable visual knowledge. In this work, we investigate the geo-equity and geographically grounded visual knowledge of text-to-video models through an attraction-centric evaluation. We introduce Geo-Attraction Landmark Probing (GAP), a systematic framework for assessing how faithfully models synthesize tourist attractions from diverse regions, and construct GEOATTRACTION-500, a benchmark of 500 globally distributed attractions spanning varied regions and popularity levels. GAP integrates complementary metrics that disentangle overall video quality from attraction-specific knowledge, including global structural alignment, fine-grained keypoint-based alignment, and vision-language model judgments, all validated against human evaluation. Applying GAP to the state-of-the-art text-to-video model Sora 2, we find that, contrary to common assumptions of strong geographic bias, the model exhibits a relatively uniform level of geographically grounded visual knowledge across regions, development levels, and cultural groupings, with only weak dependence on attraction popularity. These results suggest that current text-to-video models express global visual knowledge more evenly than expected, highlighting both their promise for globally deployed applications and the need for continued evaluation as such systems evolve.
Despite the remarkable progress in text-driven video editing, generating coherent non-rigid deformations remains a critical challenge, often plagued by physical distortion and temporal flicker. To bridge this gap, we propose NRVBench, the first dedicated and comprehensive benchmark designed to evaluate non-rigid video editing. First, we curate a high-quality dataset consisting of 180 non-rigid motion videos from six physics-based categories, equipped with 2,340 fine-grained task instructions and 360 multiple-choice questions. Second, we propose NRVE-Acc, a novel evaluation metric based on Vision-Language Models that can rigorously assess physical compliance, temporal consistency, and instruction alignment, overcoming the limitations of general metrics in capturing complex dynamics. Third, we introduce a training-free baseline, VM-Edit, which utilizes a dual-region denoising mechanism to achieve structure-aware control, balancing structural preservation and dynamic deformation. Extensive experiments demonstrate that while current methods have shortcomings in maintaining physical plausibility, our method achieves excellent performance across both standard and proposed metrics. We believe the benchmark could serve as a standard testing platform for advancing physics-aware video editing.