Abstract:Clothed avatar generation has wide applications in virtual and augmented reality, filmmaking, and more. Previous methods have achieved success in generating diverse digital avatars, however, generating avatars with disentangled components (\eg, body, hair, and clothes) has long been a challenge. In this paper, we propose LayerAvatar, the first feed-forward diffusion-based method for generating component-disentangled clothed avatars. To achieve this, we first propose a layered UV feature plane representation, where components are distributed in different layers of the Gaussian-based UV feature plane with corresponding semantic labels. This representation supports high-resolution and real-time rendering, as well as expressive animation including controllable gestures and facial expressions. Based on the well-designed representation, we train a single-stage diffusion model and introduce constrain terms to address the severe occlusion problem of the innermost human body layer. Extensive experiments demonstrate the impressive performances of our method in generating disentangled clothed avatars, and we further explore its applications in component transfer. The project page is available at: https://olivia23333.github.io/LayerAvatar/
Abstract:3D facial animation has attracted considerable attention due to its extensive applications in the multimedia field. Audio-driven 3D facial animation has been widely explored with promising results. However, multi-modal 3D facial animation, especially text-guided 3D facial animation is rarely explored due to the lack of multi-modal 3D facial animation dataset. To fill this gap, we first construct a large-scale multi-modal 3D facial animation dataset, MMHead, which consists of 49 hours of 3D facial motion sequences, speech audios, and rich hierarchical text annotations. Each text annotation contains abstract action and emotion descriptions, fine-grained facial and head movements (i.e., expression and head pose) descriptions, and three possible scenarios that may cause such emotion. Concretely, we integrate five public 2D portrait video datasets, and propose an automatic pipeline to 1) reconstruct 3D facial motion sequences from monocular videos; and 2) obtain hierarchical text annotations with the help of AU detection and ChatGPT. Based on the MMHead dataset, we establish benchmarks for two new tasks: text-induced 3D talking head animation and text-to-3D facial motion generation. Moreover, a simple but efficient VQ-VAE-based method named MM2Face is proposed to unify the multi-modal information and generate diverse and plausible 3D facial motions, which achieves competitive results on both benchmarks. Extensive experiments and comprehensive analysis demonstrate the significant potential of our dataset and benchmarks in promoting the development of multi-modal 3D facial animation.
Abstract:Image processing, including image restoration, image enhancement, etc., involves generating a high-quality clean image from a degraded input. Deep learning-based methods have shown superior performance for various image processing tasks in terms of single-task conditions. However, they require to train separate models for different degradations and levels, which limits the generalization abilities of these models and restricts their applications in real-world. In this paper, we propose a text-induced unified image processor for low-level vision tasks, termed UniProcessor, which can effectively process various degradation types and levels, and support multimodal control. Specifically, our UniProcessor encodes degradation-specific information with the subject prompt and process degradations with the manipulation prompt. These context control features are injected into the UniProcessor backbone via cross-attention to control the processing procedure. For automatic subject-prompt generation, we further build a vision-language model for general-purpose low-level degradation perception via instruction tuning techniques. Our UniProcessor covers 30 degradation types, and extensive experiments demonstrate that our UniProcessor can well process these degradations without additional training or tuning and outperforms other competing methods. Moreover, with the help of degradation-aware context control, our UniProcessor first shows the ability to individually handle a single distortion in an image with multiple degradations.
Abstract:Recent years have witnessed the rapid development of short videos, which usually contain both visual and audio modalities. Background music is important to the short videos, which can significantly influence the emotions of the viewers. However, at present, the background music of short videos is generally chosen by the video producer, and there is a lack of automatic music recommendation methods for short videos. This paper introduces MVBind, an innovative Music-Video embedding space Binding model for cross-modal retrieval. MVBind operates as a self-supervised approach, acquiring inherent knowledge of intermodal relationships directly from data, without the need of manual annotations. Additionally, to compensate the lack of a corresponding musical-visual pair dataset for short videos, we construct a dataset, SVM-10K(Short Video with Music-10K), which mainly consists of meticulously selected short videos. On this dataset, MVBind manifests significantly improved performance compared to other baseline methods. The constructed dataset and code will be released to facilitate future research.
Abstract:Singing, as a common facial movement second only to talking, can be regarded as a universal language across ethnicities and cultures, plays an important role in emotional communication, art, and entertainment. However, it is often overlooked in the field of audio-driven facial animation due to the lack of singing head datasets and the domain gap between singing and talking in rhythm and amplitude. To this end, we collect a high-quality large-scale singing head dataset, SingingHead, which consists of more than 27 hours of synchronized singing video, 3D facial motion, singing audio, and background music from 76 individuals and 8 types of music. Along with the SingingHead dataset, we argue that 3D and 2D facial animation tasks can be solved together, and propose a unified singing facial animation framework named UniSinger to achieve both singing audio-driven 3D singing head animation and 2D singing portrait video synthesis. Extensive comparative experiments with both SOTA 3D facial animation and 2D portrait animation methods demonstrate the necessity of singing-specific datasets in singing head animation tasks and the promising performance of our unified facial animation framework.
Abstract:To bring digital avatars into people's lives, it is highly demanded to efficiently generate complete, realistic, and animatable head avatars. This task is challenging, and it is difficult for existing methods to satisfy all the requirements at once. To achieve these goals, we propose GANHead (Generative Animatable Neural Head Avatar), a novel generative head model that takes advantages of both the fine-grained control over the explicit expression parameters and the realistic rendering results of implicit representations. Specifically, GANHead represents coarse geometry, fine-gained details and texture via three networks in canonical space to obtain the ability to generate complete and realistic head avatars. To achieve flexible animation, we define the deformation filed by standard linear blend skinning (LBS), with the learned continuous pose and expression bases and LBS weights. This allows the avatars to be directly animated by FLAME parameters and generalize well to unseen poses and expressions. Compared to state-of-the-art (SOTA) methods, GANHead achieves superior performance on head avatar generation and raw scan fitting.