Abstract:The Image Data Commons (IDC) contains publicly available cancer radiology datasets that could be pertinent to the research and development of advanced imaging tools and algorithms. However, the full extent of its research capabilities is limited by the fact that these datasets have few, if any, annotations associated with them. Through this study with the AI in Medical Imaging (AIMI) initiative a significant contribution, in the form of AI-generated annotations, was made to provide 11 distinct medical imaging collections from the IDC with annotations. These collections included computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) imaging modalities. The main focus of these annotations were in the chest, breast, kidneys, prostate, and liver. Both publicly available and novel AI algorithms were adopted and further developed using open-sourced data coupled with expert annotations to create the AI-generated annotations. A portion of the AI annotations were reviewed and corrected by a radiologist to assess the AI models' performances. Both the AI's and the radiologist's annotations conformed to DICOM standards for seamless integration into the IDC collections as third-party analyses. This study further cements the well-documented notion that expansive publicly accessible datasets, in the field of cancer imaging, coupled with AI will aid in increased accessibility as well as reliability for further research and development.
Abstract:Clinical monitoring of metastatic disease to the brain can be a laborious and time-consuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.