What is Pose Transfer? Pose transfer refers to the image generation of a person with a previously unseen novel pose from another image of a person displaying that pose. The pose of the source is applied to the target.
Papers and Code
Jan 26, 2025
Abstract:Recent pose-transfer methods aim to generate temporally consistent and fully controllable videos of human action where the motion from a reference video is reenacted by a new identity. We evaluate three state-of-the-art pose-transfer methods -- AnimateAnyone, MagicAnimate, and ExAvatar -- by generating videos with actions and identities outside the training distribution and conducting a participant study about the quality of these videos. In a controlled environment of 20 distinct human actions, we find that participants, presented with the pose-transferred videos, correctly identify the desired action only 42.92% of the time. Moreover, the participants find the actions in the generated videos consistent with the reference (source) videos only 36.46% of the time. These results vary by method: participants find the splatting-based ExAvatar more consistent and photorealistic than the diffusion-based AnimateAnyone and MagicAnimate.
Via
Jan 27, 2025
Abstract:Image-based virtual try-on (VTON) aims to generate a virtual try-on result by transferring an input garment onto a target person's image. However, the scarcity of paired garment-model data makes it challenging for existing methods to achieve high generalization and quality in VTON. Also, it limits the ability to generate mask-free try-ons. To tackle the data scarcity problem, approaches such as Stable Garment and MMTryon use a synthetic data strategy, effectively increasing the amount of paired data on the model side. However, existing methods are typically limited to performing specific try-on tasks and lack user-friendliness. To enhance the generalization and controllability of VTON generation, we propose Any2AnyTryon, which can generate try-on results based on different textual instructions and model garment images to meet various needs, eliminating the reliance on masks, poses, or other conditions. Specifically, we first construct the virtual try-on dataset LAION-Garment, the largest known open-source garment try-on dataset. Then, we introduce adaptive position embedding, which enables the model to generate satisfactory outfitted model images or garment images based on input images of different sizes and categories, significantly enhancing the generalization and controllability of VTON generation. In our experiments, we demonstrate the effectiveness of our Any2AnyTryon and compare it with existing methods. The results show that Any2AnyTryon enables flexible, controllable, and high-quality image-based virtual try-on generation.https://logn-2024.github.io/Any2anyTryonProjectPage/
* 13 pages,13 figures
Via
Jan 26, 2025
Abstract:Convolutional Neural Networks (CNNs) are pivotal in image classification tasks due to their robust feature extraction capabilities. However, their high computational and memory requirements pose challenges for deployment in resource-constrained environments. This paper introduces a methodology to construct lightweight CNNs while maintaining competitive accuracy. The approach integrates two stages of training; dual-input-output model and transfer learning with progressive unfreezing. The dual-input-output model train on original and augmented datasets, enhancing robustness. Progressive unfreezing is applied to the unified model to optimize pre-learned features during fine-tuning, enabling faster convergence and improved model accuracy. The methodology was evaluated on three benchmark datasets; handwritten digit MNIST, fashion MNIST, and CIFAR-10. The proposed model achieved a state-of-the-art accuracy of 99% on the handwritten digit MNIST and 89% on fashion MNIST, with only 14,862 parameters and a model size of 0.17 MB. While performance on CIFAR-10 was comparatively lower (65% with less than 20,00 parameters), the results highlight the scalability of this method. The final model demonstrated fast inference times and low latency, making it suitable for real-time applications. Future directions include exploring advanced augmentation techniques, improving architectural scalability for complex datasets, and extending the methodology to tasks beyond classification. This research underscores the potential for creating efficient, scalable, and task-specific CNNs for diverse applications.
* 25 pages, 22 figures, 6 tables, JMLR journal standard paper and to be
submitted
Via
Jan 26, 2025
Abstract:Federated Learning (FL) offers a decentralized paradigm for collaborative model training without direct data sharing, yet it poses unique challenges for Domain Generalization (DG), including strict privacy constraints, non-i.i.d. local data, and limited domain diversity. We introduce FedAlign, a lightweight, privacy-preserving framework designed to enhance DG in federated settings by simultaneously increasing feature diversity and promoting domain invariance. First, a cross-client feature extension module broadens local domain representations through domain-invariant feature perturbation and selective cross-client feature transfer, allowing each client to safely access a richer domain space. Second, a dual-stage alignment module refines global feature learning by aligning both feature embeddings and predictions across clients, thereby distilling robust, domain-invariant features. By integrating these modules, our method achieves superior generalization to unseen domains while maintaining data privacy and operating with minimal computational and communication overhead.
* 9 pages, 4 figures
Via
Jan 25, 2025
Abstract:Fusing visual understanding into language generation, Multi-modal Large Language Models (MLLMs) are revolutionizing visual-language applications. Yet, these models are often plagued by the hallucination problem, which involves generating inaccurate objects, attributes, and relationships that do not match the visual content. In this work, we delve into the internal attention mechanisms of MLLMs to reveal the underlying causes of hallucination, exposing the inherent vulnerabilities in the instruction-tuning process. We propose a novel hallucination attack against MLLMs that exploits attention sink behaviors to trigger hallucinated content with minimal image-text relevance, posing a significant threat to critical downstream applications. Distinguished from previous adversarial methods that rely on fixed patterns, our approach generates dynamic, effective, and highly transferable visual adversarial inputs, without sacrificing the quality of model responses. Comprehensive experiments on 6 prominent MLLMs demonstrate the efficacy of our attack in compromising black-box MLLMs even with extensive mitigating mechanisms, as well as the promising results against cutting-edge commercial APIs, such as GPT-4o and Gemini 1.5. Our code is available at https://huggingface.co/RachelHGF/Mirage-in-the-Eyes.
* USENIX Security 2025
Via
Jan 25, 2025
Abstract:Sign language pre-training has gained increasing attention for its ability to enhance performance across various sign language understanding (SLU) tasks. However, existing methods often suffer from a gap between pre-training and fine-tuning, leading to suboptimal results. To address this, we propose \modelname, a unified pre-training framework that eliminates the gap between pre-training and downstream SLU tasks through a large-scale generative pre-training strategy and a novel fine-tuning paradigm. First, we introduce CSL-News, a large-scale Chinese Sign Language (CSL) dataset containing 1,985 hours of video paired with textual annotations, which enables effective large-scale pre-training. Second, \modelname unifies SLU tasks by treating downstream tasks as a single sign language translation (SLT) task during fine-tuning, ensuring seamless knowledge transfer between pre-training and fine-tuning. Furthermore, we incorporate a prior-guided fusion (PGF) module and a score-aware sampling strategy to efficiently fuse pose and RGB information, addressing keypoint inaccuracies and improving computational efficiency. Extensive experiments across multiple SLU benchmarks demonstrate that \modelname achieves state-of-the-art performance across multiple downstream SLU tasks. Dataset and code are available at \url{github.com/ZechengLi19/Uni-Sign}.
* Accepted by ICLR 2025
Via
Jan 24, 2025
Abstract:We propose Relightable Full-Body Gaussian Codec Avatars, a new approach for modeling relightable full-body avatars with fine-grained details including face and hands. The unique challenge for relighting full-body avatars lies in the large deformations caused by body articulation and the resulting impact on appearance caused by light transport. Changes in body pose can dramatically change the orientation of body surfaces with respect to lights, resulting in both local appearance changes due to changes in local light transport functions, as well as non-local changes due to occlusion between body parts. To address this, we decompose the light transport into local and non-local effects. Local appearance changes are modeled using learnable zonal harmonics for diffuse radiance transfer. Unlike spherical harmonics, zonal harmonics are highly efficient to rotate under articulation. This allows us to learn diffuse radiance transfer in a local coordinate frame, which disentangles the local radiance transfer from the articulation of the body. To account for non-local appearance changes, we introduce a shadow network that predicts shadows given precomputed incoming irradiance on a base mesh. This facilitates the learning of non-local shadowing between the body parts. Finally, we use a deferred shading approach to model specular radiance transfer and better capture reflections and highlights such as eye glints. We demonstrate that our approach successfully models both the local and non-local light transport required for relightable full-body avatars, with a superior generalization ability under novel illumination conditions and unseen poses.
* 14 pages, 9 figures. Project page:
https://neuralbodies.github.io/RFGCA
Via
Jan 21, 2025
Abstract:Audio deepfakes pose significant threats, including impersonation, fraud, and reputation damage. To address these risks, audio deepfake detection (ADD) techniques have been developed, demonstrating success on benchmarks like ASVspoof2019. However, their resilience against transferable adversarial attacks remains largely unexplored. In this paper, we introduce a transferable GAN-based adversarial attack framework to evaluate the effectiveness of state-of-the-art (SOTA) ADD systems. By leveraging an ensemble of surrogate ADD models and a discriminator, the proposed approach generates transferable adversarial attacks that better reflect real-world scenarios. Unlike previous methods, the proposed framework incorporates a self-supervised audio model to ensure transcription and perceptual integrity, resulting in high-quality adversarial attacks. Experimental results on benchmark dataset reveal that SOTA ADD systems exhibit significant vulnerabilities, with accuracies dropping from 98% to 26%, 92% to 54%, and 94% to 84% in white-box, gray-box, and black-box scenarios, respectively. When tested in other data sets, performance drops of 91% to 46%, and 94% to 67% were observed against the In-the-Wild and WaveFake data sets, respectively. These results highlight the significant vulnerabilities of existing ADD systems and emphasize the need to enhance their robustness against advanced adversarial threats to ensure security and reliability.
* WACV 2025
Via
Jan 20, 2025
Abstract:Transfer learning, successful in knowledge translation across related tasks, faces a substantial privacy threat from membership inference attacks (MIAs). These attacks, despite posing significant risk to ML model's training data, remain limited-explored in transfer learning. The interaction between teacher and student models in transfer learning has not been thoroughly explored in MIAs, potentially resulting in an under-examined aspect of privacy vulnerabilities within transfer learning. In this paper, we propose a new MIA vector against transfer learning, to determine whether a specific data point was used to train the teacher model while only accessing the student model in a white-box setting. Our method delves into the intricate relationship between teacher and student models, analyzing the discrepancies in hidden layer representations between the student model and its shadow counterpart. These identified differences are then adeptly utilized to refine the shadow model's training process and to inform membership inference decisions effectively. Our method, evaluated across four datasets in diverse transfer learning tasks, reveals that even when an attacker only has access to the student model, the teacher model's training data remains susceptible to MIAs. We believe our work unveils the unexplored risk of membership inference in transfer learning.
Via
Jan 20, 2025
Abstract:Research has increasingly explored the application of artificial intelligence (AI) and machine learning (ML) within the mental health domain to enhance both patient care and healthcare provider efficiency. Given that mental health challenges frequently emerge during early adolescence -- the critical years of high school and college -- investigating AI/ML-driven mental health solutions within the education domain is of paramount importance. Nevertheless, conventional AI/ML techniques follow a centralized model training architecture, which poses privacy risks due to the need for transferring students' sensitive data from institutions, universities, and clinics to central servers. Federated learning (FL) has emerged as a solution to address these risks by enabling distributed model training while maintaining data privacy. Despite its potential, research on applying FL to analyze students' mental health remains limited. In this paper, we aim to address this limitation by proposing a roadmap for integrating FL into mental health data analysis within educational settings. We begin by providing an overview of mental health issues among students and reviewing existing studies where ML has been applied to address these challenges. Next, we examine broader applications of FL in the mental health domain to emphasize the lack of focus on educational contexts. Finally, we propose promising research directions focused on using FL to address mental health issues in the education sector, which entails discussing the synergies between the proposed directions with broader human-centered domains. By categorizing the proposed research directions into short- and long-term strategies and highlighting the unique challenges at each stage, we aim to encourage the development of privacy-conscious AI/ML-driven mental health solutions.
* 18 pages, 1 figure, 4 tables
Via