Indian Institute of Technology Bombay
Abstract:Federated Learning (FL) offers a decentralized paradigm for collaborative model training without direct data sharing, yet it poses unique challenges for Domain Generalization (DG), including strict privacy constraints, non-i.i.d. local data, and limited domain diversity. We introduce FedAlign, a lightweight, privacy-preserving framework designed to enhance DG in federated settings by simultaneously increasing feature diversity and promoting domain invariance. First, a cross-client feature extension module broadens local domain representations through domain-invariant feature perturbation and selective cross-client feature transfer, allowing each client to safely access a richer domain space. Second, a dual-stage alignment module refines global feature learning by aligning both feature embeddings and predictions across clients, thereby distilling robust, domain-invariant features. By integrating these modules, our method achieves superior generalization to unseen domains while maintaining data privacy and operating with minimal computational and communication overhead.
Abstract:Whole slide images (WSIs) are high-resolution, gigapixel sized images that pose significant computational challenges for traditional machine learning models due to their size and heterogeneity.In this paper, we present a scalable and efficient methodology for WSI classification by leveraging patch-based feature extraction, clustering, and Fisher vector encoding. Initially, WSIs are divided into fixed size patches, and deep feature embeddings are extracted from each patch using a pre-trained convolutional neural network (CNN). These patch-level embeddings are subsequently clustered using K-means clustering, where each cluster aggregates semantically similar regions of the WSI. To effectively summarize each cluster, Fisher vector representations are computed by modeling the distribution of patch embeddings in each cluster as a parametric Gaussian mixture model (GMM). The Fisher vectors from each cluster are concatenated into a high-dimensional feature vector, creating a compact and informative representation of the entire WSI. This feature vector is then used by a classifier to predict the WSI's diagnostic label. Our method captures local and global tissue structures and yields robust performance for large-scale WSI classification, demonstrating superior accuracy and scalability compared to other approaches.
Abstract:Federated Learning (FL) has gained popularity for fine-tuning large language models (LLMs) across multiple nodes, each with its own private data. While LoRA has been widely adopted for parameter efficient federated fine-tuning, recent theoretical and empirical studies highlight its suboptimal performance in the federated learning context. In response, we propose a novel, simple, and more effective parameter-efficient fine-tuning method that does not rely on LoRA. Our approach introduces a small multi-layer perceptron (MLP) layer between two existing MLP layers the up proj (the FFN projection layer following the self-attention module) and down proj within the feed forward network of the transformer block. This solution addresses the bottlenecks associated with LoRA in federated fine tuning and outperforms recent LoRA-based approaches, demonstrating superior performance for both language models and vision encoders.
Abstract:Deep learning models rely heavily on large volumes of labeled data to achieve high performance. However, real-world datasets often contain noisy labels due to human error, ambiguity, or resource constraints during the annotation process. Instance-dependent label noise (IDN), where the probability of a label being corrupted depends on the input features, poses a significant challenge because it is more prevalent and harder to address than instance-independent noise. In this paper, we propose a novel hybrid framework that combines self-supervised learning using SimCLR with iterative pseudo-label refinement to mitigate the effects of IDN. The self-supervised pre-training phase enables the model to learn robust feature representations without relying on potentially noisy labels, establishing a noise-agnostic foundation. Subsequently, we employ an iterative training process with pseudo-label refinement, where confidently predicted samples are identified through a multistage approach and their labels are updated to improve label quality progressively. We evaluate our method on the CIFAR-10 and CIFAR-100 datasets augmented with synthetic instance-dependent noise at varying noise levels. Experimental results demonstrate that our approach significantly outperforms several state-of-the-art methods, particularly under high noise conditions, achieving notable improvements in classification accuracy and robustness. Our findings suggest that integrating self-supervised learning with iterative pseudo-label refinement offers an effective strategy for training deep neural networks on noisy datasets afflicted by instance-dependent label noise.
Abstract:Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we encode the conditioning label information into vectors and intermediate matrices and further minimize the cosine similarity between features of the generated images. Additionally, we incorporate feature orthogonality as a regularization term to boost image diversity which penalises the deviations of the Gram matrix of the features from the identity matrix, ensuring orthogonality and promoting distinct, non-redundant representations for each label. The paper concludes by exploring immediate applications of the proposed network inversion approach in interpretability, out-of-distribution detection, and training data reconstruction.
Abstract:We introduce a new metric to assess the quality of generated images that is more reliable, data-efficient, compute-efficient, and adaptable to new domains than the previous metrics, such as Fr\'echet Inception Distance (FID). The proposed metric is based on normalizing flows, which allows for the computation of density (exact log-likelihood) of images from any domain. Thus, unlike FID, the proposed Flow-based Likelihood Distance Plus (FLD+) metric exhibits strongly monotonic behavior with respect to different types of image degradations, including noise, occlusion, diffusion steps, and generative model size. Additionally, because normalizing flow can be trained stably and efficiently, FLD+ achieves stable results with two orders of magnitude fewer images than FID (which requires more images to reliably compute Fr\'echet distance between features of large samples of real and generated images). We made FLD+ computationally even more efficient by applying normalizing flows to features extracted in a lower-dimensional latent space instead of using a pre-trained network. We also show that FLD+ can easily be retrained on new domains, such as medical images, unlike the networks behind previous metrics -- such as InceptionNetV3 pre-trained on ImageNet.
Abstract:Whole Slide Imaging (WSI) is a cornerstone of digital pathology, offering detailed insights critical for diagnosis and research. Yet, the gigapixel size of WSIs imposes significant computational challenges, limiting their practical utility. Our novel approach addresses these challenges by leveraging various encoders for intelligent data reduction and employing a different classification model to ensure robust, permutation-invariant representations of WSIs. A key innovation of our method is the ability to distill the complex information of an entire WSI into a single vector, effectively capturing the essential features needed for accurate analysis. This approach significantly enhances the computational efficiency of WSI analysis, enabling more accurate pathological assessments without the need for extensive computational resources. This breakthrough equips us with the capability to effectively address the challenges posed by large image resolutions in whole-slide imaging, paving the way for more scalable and effective utilization of WSIs in medical diagnostics and research, marking a significant advancement in the field.
Abstract:We address the challenge of automated classification of diffuse large B-cell lymphoma (DLBCL) into its two primary subtypes: activated B-cell-like (ABC) and germinal center B-cell-like (GCB). Accurate classification between these subtypes is essential for determining the appropriate therapeutic strategy, given their distinct molecular profiles and treatment responses. Our proposed deep learning model demonstrates robust performance, achieving an average area under the curve (AUC) of (87.4 pm 5.7)\% during cross-validation. It shows a high positive predictive value (PPV), highlighting its potential for clinical application, such as triaging for molecular testing. To gain biological insights, we performed an analysis of morphological features of ABC and GCB subtypes. We segmented cell nuclei using a pre-trained deep neural network and compared the statistics of geometric and color features for ABC and GCB. We found that the distributions of these features were not very different for the two subtypes, which suggests that the visual differences between them are more subtle. These results underscore the potential of our method to assist in more precise subtype classification and can contribute to improved treatment management and outcomes for patients of DLBCL.
Abstract:The advancement of digital pathology, particularly through computational analysis of whole slide images (WSI), is poised to significantly enhance diagnostic precision and efficiency. However, the large size and complexity of WSIs make it difficult to analyze and classify them using computers. This study introduces a novel method for WSI classification by automating the identification and examination of the most informative patches, thus eliminating the need to process the entire slide. Our method involves two-stages: firstly, it extracts only a few patches from the WSIs based on their pathological significance; and secondly, it employs Fisher vectors (FVs) for representing features extracted from these patches, which is known for its robustness in capturing fine-grained details. This approach not only accentuates key pathological features within the WSI representation but also significantly reduces computational overhead, thus making the process more efficient and scalable. We have rigorously evaluated the proposed method across multiple datasets to benchmark its performance against comprehensive WSI analysis and contemporary weakly-supervised learning methodologies. The empirical results indicate that our focused analysis of select patches, combined with Fisher vector representation, not only aligns with, but at times surpasses, the classification accuracy of standard practices. Moreover, this strategy notably diminishes computational load and resource expenditure, thereby establishing an efficient and precise framework for WSI analysis in the realm of digital pathology.
Abstract:Accurate survival prediction is essential for personalized cancer treatment. However, genomic data - often a more powerful predictor than pathology data - is costly and inaccessible. We present the cross-modal genomic feature translation and alignment network for enhanced survival prediction from histopathology images (PathoGen-X). It is a deep learning framework that leverages both genomic and imaging data during training, relying solely on imaging data at testing. PathoGen-X employs transformer-based networks to align and translate image features into the genomic feature space, enhancing weaker imaging signals with stronger genomic signals. Unlike other methods, PathoGen-X translates and aligns features without projecting them to a shared latent space and requires fewer paired samples. Evaluated on TCGA-BRCA, TCGA-LUAD, and TCGA-GBM datasets, PathoGen-X demonstrates strong survival prediction performance, emphasizing the potential of enriched imaging models for accessible cancer prognosis.