Abstract:Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor-intensive. We present a fully automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT) framework to leverage these LLM-generated KCs, which we refer to as KCGen-KT. We conduct extensive quantitative and qualitative evaluations validating the effectiveness of KCGen-KT. On a real-world dataset of student code submissions to open-ended programming problems, KCGen-KT outperforms existing KT methods. We investigate the learning curves of generated KCs and show that LLM-generated KCs have a comparable level-of-fit to human-written KCs under the performance factor analysis (PFA) model. We also conduct a human evaluation to show that the KC tagging accuracy of our pipeline is reasonably accurate when compared to that by human domain experts.
Abstract:Research has increasingly explored the application of artificial intelligence (AI) and machine learning (ML) within the mental health domain to enhance both patient care and healthcare provider efficiency. Given that mental health challenges frequently emerge during early adolescence -- the critical years of high school and college -- investigating AI/ML-driven mental health solutions within the education domain is of paramount importance. Nevertheless, conventional AI/ML techniques follow a centralized model training architecture, which poses privacy risks due to the need for transferring students' sensitive data from institutions, universities, and clinics to central servers. Federated learning (FL) has emerged as a solution to address these risks by enabling distributed model training while maintaining data privacy. Despite its potential, research on applying FL to analyze students' mental health remains limited. In this paper, we aim to address this limitation by proposing a roadmap for integrating FL into mental health data analysis within educational settings. We begin by providing an overview of mental health issues among students and reviewing existing studies where ML has been applied to address these challenges. Next, we examine broader applications of FL in the mental health domain to emphasize the lack of focus on educational contexts. Finally, we propose promising research directions focused on using FL to address mental health issues in the education sector, which entails discussing the synergies between the proposed directions with broader human-centered domains. By categorizing the proposed research directions into short- and long-term strategies and highlighting the unique challenges at each stage, we aim to encourage the development of privacy-conscious AI/ML-driven mental health solutions.