Abstract:The advancement in healthcare has shifted focus toward patient-centric approaches, particularly in self-care and patient education, facilitated by access to Electronic Health Records (EHR). However, medical jargon in EHRs poses significant challenges in patient comprehension. To address this, we introduce a new task of automatically generating lay definitions, aiming to simplify complex medical terms into patient-friendly lay language. We first created the README dataset, an extensive collection of over 20,000 unique medical terms and 300,000 mentions, each offering context-aware lay definitions manually annotated by domain experts. We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality. We then used README as the training data for models and leveraged a Retrieval-Augmented Generation (RAG) method to reduce hallucinations and improve the quality of model outputs. Our extensive automatic and human evaluations demonstrate that open-source mobile-friendly models, when fine-tuned with high-quality data, are capable of matching or even surpassing the performance of state-of-the-art closed-source large language models like ChatGPT. This research represents a significant stride in closing the knowledge gap in patient education and advancing patient-centric healthcare solutions
Abstract:Stock trading is one of the popular ways for financial management. However, the market and the environment of economy is unstable and usually not predictable. Furthermore, engaging in stock trading requires time and effort to analyze, create strategies, and make decisions. It would be convenient and effective if an agent could assist or even do the task of analyzing and modeling the past data and then generate a strategy for autonomous trading. Recently, reinforcement learning has been shown to be robust in various tasks that involve achieving a goal with a decision making strategy based on time-series data. In this project, we have developed a pipeline that simulates the stock trading environment and have trained an agent to automate the stock trading process with deep reinforcement learning methods, including deep Q-learning, deep SARSA, and the policy gradient method. We evaluate our platform during relatively good (before 2021) and bad (2021 - 2022) situations. The stocks we've evaluated on including Google, Apple, Tesla, Meta, Microsoft, and IBM. These stocks are among the popular ones, and the changes in trends are representative in terms of having good and bad situations. We showed that before 2021, the three reinforcement methods we have tried always provide promising profit returns with total annual rates around $70\%$ to $90\%$, while maintain a positive profit return after 2021 with total annual rates around 2% to 7%.