Abstract:Pre-training has been proven to be effective in boosting the performance of Isolated Sign Language Recognition (ISLR). Existing pre-training methods solely focus on the compact pose data, which eliminate background perturbation but inevitably suffer from insufficient semantic cues compared to raw RGB videos. Nevertheless, direct representation learning only from RGB videos remains challenging due to the presence of sign-independent visual features. To address this dilemma, we propose a Cross-modal Consistency Learning framework (CCL-SLR), which leverages the cross-modal consistency from both RGB and pose modalities based on self-supervised pre-training. First, CCL-SLR employs contrastive learning for instance discrimination within and across modalities. Through the single-modal and cross-modal contrastive learning, CCL-SLR gradually aligns the feature spaces of RGB and pose modalities, thereby extracting consistent sign representations. Second, we further introduce Motion-Preserving Masking (MPM) and Semantic Positive Mining (SPM) techniques to improve cross-modal consistency from the perspective of data augmentation and sample similarity, respectively. Extensive experiments on four ISLR benchmarks show that CCL-SLR achieves impressive performance, demonstrating its effectiveness. The code will be released to the public.
Abstract:Sign language pre-training has gained increasing attention for its ability to enhance performance across various sign language understanding (SLU) tasks. However, existing methods often suffer from a gap between pre-training and fine-tuning, leading to suboptimal results. To address this, we propose \modelname, a unified pre-training framework that eliminates the gap between pre-training and downstream SLU tasks through a large-scale generative pre-training strategy and a novel fine-tuning paradigm. First, we introduce CSL-News, a large-scale Chinese Sign Language (CSL) dataset containing 1,985 hours of video paired with textual annotations, which enables effective large-scale pre-training. Second, \modelname unifies SLU tasks by treating downstream tasks as a single sign language translation (SLT) task during fine-tuning, ensuring seamless knowledge transfer between pre-training and fine-tuning. Furthermore, we incorporate a prior-guided fusion (PGF) module and a score-aware sampling strategy to efficiently fuse pose and RGB information, addressing keypoint inaccuracies and improving computational efficiency. Extensive experiments across multiple SLU benchmarks demonstrate that \modelname achieves state-of-the-art performance across multiple downstream SLU tasks. Dataset and code are available at \url{github.com/ZechengLi19/Uni-Sign}.