Abstract:The Automatic Speaker Verification (ASV) system is vulnerable to fraudulent activities using audio deepfakes, also known as logical-access voice spoofing attacks. These deepfakes pose a concerning threat to voice biometrics due to recent advancements in generative AI and speech synthesis technologies. While several deep learning models for speech synthesis detection have been developed, most of them show poor generalizability, especially when the attacks have different statistical distributions from the ones seen. Therefore, this paper presents Quick-SpoofNet, an approach for detecting both seen and unseen synthetic attacks in the ASV system using one-shot learning and metric learning techniques. By using the effective spectral feature set, the proposed method extracts compact and representative temporal embeddings from the voice samples and utilizes metric learning and triplet loss to assess the similarity index and distinguish different embeddings. The system effectively clusters similar speech embeddings, classifying bona fide speeches as the target class and identifying other clusters as spoofing attacks. The proposed system is evaluated using the ASVspoof 2019 logical access (LA) dataset and tested against unseen deepfake attacks from the ASVspoof 2021 dataset. Additionally, its generalization ability towards unseen bona fide speech is assessed using speech data from the VSDC dataset.
Abstract:Automatic Speaker Verification (ASV) systems are increasingly used in voice bio-metrics for user authentication but are susceptible to logical and physical spoofing attacks, posing security risks. Existing research mainly tackles logical or physical attacks separately, leading to a gap in unified spoofing detection. Moreover, when existing systems attempt to handle both types of attacks, they often exhibit significant disparities in the Equal Error Rate (EER). To bridge this gap, we present a Parallel Stacked Aggregation Network that processes raw audio. Our approach employs a split-transform-aggregation technique, dividing utterances into convolved representations, applying transformations, and aggregating the results to identify logical (LA) and physical (PA) spoofing attacks. Evaluation of the ASVspoof-2019 and VSDC datasets shows the effectiveness of the proposed system. It outperforms state-of-the-art solutions, displaying reduced EER disparities and superior performance in detecting spoofing attacks. This highlights the proposed method's generalizability and superiority. In a world increasingly reliant on voice-based security, our unified spoofing detection system provides a robust defense against a spectrum of voice spoofing attacks, safeguarding ASVs and user data effectively.
Abstract:Voice spoofing attacks pose a significant threat to automated speaker verification systems. Existing anti-spoofing methods often simulate specific attack types, such as synthetic or replay attacks. However, in real-world scenarios, the countermeasures are unaware of the generation schema of the attack, necessitating a unified solution. Current unified solutions struggle to detect spoofing artifacts, especially with recent spoofing mechanisms. For instance, the spoofing algorithms inject spectral or temporal anomalies, which are challenging to identify. To this end, we present a spectra-temporal fusion leveraging frame-level and utterance-level coefficients. We introduce a novel local spectral deviation coefficient (SDC) for frame-level inconsistencies and employ a bi-LSTM-based network for sequential temporal coefficients (STC), which capture utterance-level artifacts. Our spectra-temporal fusion strategy combines these coefficients, and an auto-encoder generates spectra-temporal deviated coefficients (STDC) to enhance robustness. Our proposed approach addresses multiple spoofing categories, including synthetic, replay, and partial deepfake attacks. Extensive evaluation on diverse datasets (ASVspoof2019, ASVspoof2021, VSDC, partial spoofs, and in-the-wild deepfakes) demonstrated its robustness for a wide range of voice applications.
Abstract:Malicious actors may seek to use different voice-spoofing attacks to fool ASV systems and even use them for spreading misinformation. Various countermeasures have been proposed to detect these spoofing attacks. Due to the extensive work done on spoofing detection in automated speaker verification (ASV) systems in the last 6-7 years, there is a need to classify the research and perform qualitative and quantitative comparisons on state-of-the-art countermeasures. Additionally, no existing survey paper has reviewed integrated solutions to voice spoofing evaluation and speaker verification, adversarial/antiforensics attacks on spoofing countermeasures, and ASV itself, or unified solutions to detect multiple attacks using a single model. Further, no work has been done to provide an apples-to-apples comparison of published countermeasures in order to assess their generalizability by evaluating them across corpora. In this work, we conduct a review of the literature on spoofing detection using hand-crafted features, deep learning, end-to-end, and universal spoofing countermeasure solutions to detect speech synthesis (SS), voice conversion (VC), and replay attacks. Additionally, we also review integrated solutions to voice spoofing evaluation and speaker verification, adversarial and anti-forensics attacks on voice countermeasures, and ASV. The limitations and challenges of the existing spoofing countermeasures are also presented. We report the performance of these countermeasures on several datasets and evaluate them across corpora. For the experiments, we employ the ASVspoof2019 and VSDC datasets along with GMM, SVM, CNN, and CNN-GRU classifiers. (For reproduceability of the results, the code of the test bed can be found in our GitHub Repository.
Abstract:Easy access to audio-visual content on social media, combined with the availability of modern tools such as Tensorflow or Keras, open-source trained models, and economical computing infrastructure, and the rapid evolution of deep-learning (DL) methods, especially Generative Adversarial Networks (GAN), have made it possible to generate deepfakes to disseminate disinformation, revenge porn, financial frauds, hoaxes, and to disrupt government functioning. The existing surveys have mainly focused on deepfake video detection only. No attempt has been made to review approaches for detection and generation of both audio and video deepfakes. This paper provides a comprehensive review and detailed analysis of existing tools and machine learning (ML) based approaches for deepfake generation and the methodologies used to detect such manipulations for the detection and generation of both audio and video deepfakes. For each category of deepfake, we discuss information related to manipulation approaches, current public datasets, and key standards for the performance evaluation of deepfake detection techniques along with their results. Additionally, we also discuss open challenges and enumerate future directions to guide future researchers on issues that need to be considered to improve the domains of both the deepfake generation and detection. This work is expected to assist the readers in understanding the creation and detection mechanisms of deepfake, along with their current limitations and future direction.