Abstract:The surge in real-time data collection across various industries has underscored the need for advanced anomaly detection in both univariate and multivariate time series data. Traditional methods, while comprehensive, often struggle to capture the complex interdependencies in such data. This paper introduces TransNAS-TSAD, a novel framework that synergizes transformer architecture with neural architecture search (NAS), enhanced through NSGA-II algorithm optimization. This innovative approach effectively tackles the complexities of both univariate and multivariate time series, balancing computational efficiency with detection accuracy. Our evaluation reveals that TransNAS-TSAD surpasses conventional anomaly detection models, demonstrating marked improvements in diverse data scenarios. We also propose the Efficiency-Accuracy-Complexity Score (EACS) as a new metric for assessing model performance, emphasizing the crucial balance between accuracy and computational resources. TransNAS-TSAD sets a new benchmark in time series anomaly detection, offering a versatile, efficient solution for complex real-world applications. This research paves the way for future developments in the field, highlighting its potential in a wide range of industry applications.
Abstract:This paper presents an automated machine learning framework designed to assist hydrologists in detecting anomalies in time series data generated by sensors in a research watershed in the northeastern United States critical zone. The framework specifically focuses on identifying peak-pattern anomalies, which may arise from sensor malfunctions or natural phenomena. However, the use of classification methods for anomaly detection poses challenges, such as the requirement for labeled data as ground truth and the selection of the most suitable deep learning model for the given task and dataset. To address these challenges, our framework generates labeled datasets by injecting synthetic peak patterns into synthetically generated time series data and incorporates an automated hyperparameter optimization mechanism. This mechanism generates an optimized model instance with the best architectural and training parameters from a pool of five selected models, namely Temporal Convolutional Network (TCN), InceptionTime, MiniRocket, Residual Networks (ResNet), and Long Short-Term Memory (LSTM). The selection is based on the user's preferences regarding anomaly detection accuracy and computational cost. The framework employs Time-series Generative Adversarial Networks (TimeGAN) as the synthetic dataset generator. The generated model instances are evaluated using a combination of accuracy and computational cost metrics, including training time and memory, during the anomaly detection process. Performance evaluation of the framework was conducted using a dataset from a watershed, demonstrating consistent selection of the most fitting model instance that satisfies the user's preferences.