What is Image Dehazing? Image dehazing is the process of removing haze or fog from images to improve their visibility.
Papers and Code
Dec 18, 2024
Abstract:This paper proposes a lightweight neural network designed for realistic image dehazing, utilizing a Distilled Pooling Transformer Encoder, named DPTE-Net. Recently, while vision transformers (ViTs) have achieved great success in various vision tasks, their self-attention (SA) module's complexity scales quadratically with image resolution, hindering their applicability on resource-constrained devices. To overcome this, the proposed DPTE-Net substitutes traditional SA modules with efficient pooling mechanisms, significantly reducing computational demands while preserving ViTs' learning capabilities. To further enhance semantic feature learning, a distillation-based training process is implemented which transfers rich knowledge from a larger teacher network to DPTE-Net. Additionally, DPTE-Net is trained within a generative adversarial network (GAN) framework, leveraging the strong generalization of GAN in image restoration, and employs a transmission-aware loss function to dynamically adapt to varying haze densities. Experimental results on various benchmark datasets have shown that the proposed DPTE-Net can achieve competitive dehazing performance when compared to state-of-the-art methods while maintaining low computational complexity, making it a promising solution for resource-limited applications. The code of this work is available at https://github.com/tranleanh/dpte-net.
* 18 pages, 17 figures
Via
Dec 15, 2024
Abstract:Image restoration (IR) is a long-standing task to recover a high-quality image from its corrupted observation. Recently, transformer-based algorithms and some attention-based convolutional neural networks (CNNs) have presented promising results on several IR tasks. However, existing convolutional residual building modules for IR encounter limited ability to map inputs into high-dimensional and non-linear feature spaces, and their local receptive fields have difficulty in capturing long-range context information like Transformer. Besides, CNN-based attention modules for IR either face static abundant parameters or have limited receptive fields. To address the first issue, we propose an efficient residual star module (ERSM) that includes context-aware "star operation" (element-wise multiplication) to contextually map features into exceedingly high-dimensional and non-linear feature spaces, which greatly enhances representation learning. To further boost the extraction of contextual information, as for the second issue, we propose a large dynamic integration module (LDIM) which possesses an extremely large receptive field. Thus, LDIM can dynamically and efficiently integrate more contextual information that helps to further significantly improve the reconstruction performance. Integrating ERSM and LDIM into an U-shaped backbone, we propose a context-aware convolutional network (CCNet) with powerful learning ability for contextual high-dimensional mapping and abundant contextual information. Extensive experiments show that our CCNet with low model complexity achieves superior performance compared to other state-of-the-art IR methods on several IR tasks, including image dehazing, image motion deblurring, and image desnowing.
Via
Dec 04, 2024
Abstract:Relying on the representation power of neural networks, most recent works have often neglected several factors involved in haze degradation, such as transmission (the amount of light reaching an observer from a scene over distance) and atmospheric light. These factors are generally unknown, making dehazing problems ill-posed and creating inherent uncertainties. To account for such uncertainties and factors involved in haze degradation, we introduce a variational Bayesian framework for single image dehazing. We propose to take not only a clean image and but also transmission map as latent variables, the posterior distributions of which are parameterized by corresponding neural networks: dehazing and transmission networks, respectively. Based on a physical model for haze degradation, our variational Bayesian framework leads to a new objective function that encourages the cooperation between them, facilitating the joint training of and thereby boosting the performance of each other. In our framework, a dehazing network can estimate a clean image independently of a transmission map estimation during inference, introducing no overhead. Furthermore, our model-agnostic framework can be seamlessly incorporated with other existing dehazing networks, greatly enhancing the performance consistently across datasets and models.
* In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management 2023 Oct 21 (pp. 895-904)
* Published in CIKM 2023, 10 pages, 9 figures
Via
Nov 22, 2024
Abstract:Image restoration aims to recover high-quality images from degraded observations. When the degradation process is known, the recovery problem can be formulated as an inverse problem, and in a Bayesian context, the goal is to sample a clean reconstruction given the degraded observation. Recently, modern pretrained diffusion models have been used for image restoration by modifying their sampling procedure to account for the degradation process. However, these methods often rely on certain approximations that can lead to significant errors and compromised sample quality. In this paper, we provide the first rigorous analysis of this approximation error for linear inverse problems under distributional assumptions on the space of natural images, demonstrating cases where previous works can fail dramatically. Motivated by our theoretical insights, we propose a simple modification to existing diffusion-based restoration methods. Our approach introduces a time-varying low-pass filter in the frequency domain of the measurements, progressively incorporating higher frequencies during the restoration process. We develop an adaptive curriculum for this frequency schedule based on the underlying data distribution. Our method significantly improves performance on challenging image restoration tasks including motion deblurring and image dehazing.
Via
Nov 15, 2024
Abstract:Computer vision is increasingly used in areas such as unmanned vehicles, surveillance systems and remote sensing. However, in foggy scenarios, image degradation leads to loss of target details, which seriously affects the accuracy and effectiveness of these vision tasks. Polarized light, due to the fact that its electromagnetic waves vibrate in a specific direction, is able to resist scattering and refraction effects in complex media more effectively compared to unpolarized light. As a result, polarized light has a greater ability to maintain its polarization characteristics in complex transmission media and under long-distance imaging conditions. This property makes polarized imaging especially suitable for complex scenes such as outdoor and underwater, especially in foggy environments, where higher quality images can be obtained. Based on this advantage, we propose an innovative semi-physical polarization dehazing method that does not rely on an external light source. The method simulates the diffusion process of fog and designs a diffusion kernel that corresponds to the image blurriness caused by this diffusion. By employing spatiotemporal Fourier transforms and deconvolution operations, the method recovers the state of fog droplets prior to diffusion and the light inversion distribution of objects. This approach effectively achieves dehazing and detail enhancement of the scene.
Via
Nov 10, 2024
Abstract:With the popularization of high-end mobile devices, Ultra-high-definition (UHD) images have become ubiquitous in our lives. The restoration of UHD images is a highly challenging problem due to the exaggerated pixel count, which often leads to memory overflow during processing. Existing methods either downsample UHD images at a high rate before processing or split them into multiple patches for separate processing. However, high-rate downsampling leads to significant information loss, while patch-based approaches inevitably introduce boundary artifacts. In this paper, we propose a novel design paradigm to solve the UHD image restoration problem, called D2Net. D2Net enables direct full-resolution inference on UHD images without the need for high-rate downsampling or dividing the images into several patches. Specifically, we ingeniously utilize the characteristics of the frequency domain to establish long-range dependencies of features. Taking into account the richer local patterns in UHD images, we also design a multi-scale convolutional group to capture local features. Additionally, during the decoding stage, we dynamically incorporate features from the encoding stage to reduce the flow of irrelevant information. Extensive experiments on three UHD image restoration tasks, including low-light image enhancement, image dehazing, and image deblurring, show that our model achieves better quantitative and qualitative results than state-of-the-art methods.
* WACV2025
Via
Nov 16, 2024
Abstract:Infrared and visible (IR-VIS) image fusion has gained significant attention for its broad application value. However, existing methods often neglect the complementary role of infrared image in restoring visible image features under hazy conditions. To address this, we propose a joint learning framework that utilizes infrared image for the restoration and fusion of hazy IR-VIS images. To mitigate the adverse effects of feature diversity between IR-VIS images, we introduce a prompt generation mechanism that regulates modality-specific feature incompatibility. This creates a prompt selection matrix from non-shared image information, followed by prompt embeddings generated from a prompt pool. These embeddings help generate candidate features for dehazing. We further design an infrared-assisted feature restoration mechanism that selects candidate features based on haze density, enabling simultaneous restoration and fusion within a single-stage framework. To enhance fusion quality, we construct a multi-stage prompt embedding fusion module that leverages feature supplementation from the prompt generation module. Our method effectively fuses IR-VIS images while removing haze, yielding clear, haze-free fusion results. In contrast to two-stage methods that dehaze and then fuse, our approach enables collaborative training in a single-stage framework, making the model relatively lightweight and suitable for practical deployment. Experimental results validate its effectiveness and demonstrate advantages over existing methods.
Via
Nov 21, 2024
Abstract:This paper delves into the potential of DU-VIO, a dehazing-aided hybrid multi-rate multi-modal Visual-Inertial Odometry (VIO) estimation framework, designed to thrive in the challenging realm of extreme underwater environments. The cutting-edge DU-VIO framework is incorporating a GAN-based pre-processing module and a hybrid CNN-LSTM module for precise pose estimation, using visibility-enhanced underwater images and raw IMU data. Accurate pose estimation is paramount for various underwater robotics and exploration applications. However, underwater visibility is often compromised by suspended particles and attenuation effects, rendering visual-inertial pose estimation a formidable challenge. DU-VIO aims to overcome these limitations by effectively removing visual disturbances from raw image data, enhancing the quality of image features used for pose estimation. We demonstrate the effectiveness of DU-VIO by calculating RMSE scores for translation and rotation vectors in comparison to their reference values. These scores are then compared to those of a base model using a modified AQUALOC Dataset. This study's significance lies in its potential to revolutionize underwater robotics and exploration. DU-VIO offers a robust solution to the persistent challenge of underwater visibility, significantly improving the accuracy of pose estimation. This research contributes valuable insights and tools for advancing underwater technology, with far-reaching implications for scientific research, environmental monitoring, and industrial applications.
Via
Nov 12, 2024
Abstract:Outdoor images often suffer from severe degradation due to rain, haze, and noise, impairing image quality and challenging high-level tasks. Current image restoration methods struggle to handle complex degradation while maintaining efficiency. This paper introduces a novel image restoration architecture that combines multi-dimensional dynamic attention and self-attention within a U-Net framework. To leverage the global modeling capabilities of transformers and the local modeling capabilities of convolutions, we integrate sole CNNs in the encoder-decoder and sole transformers in the latent layer. Additionally, we design convolutional kernels with selected multi-dimensional dynamic attention to capture diverse degraded inputs efficiently. A transformer block with transposed self-attention further enhances global feature extraction while maintaining efficiency. Extensive experiments demonstrate that our method achieves a better balance between performance and computational complexity across five image restoration tasks: deraining, deblurring, denoising, dehazing, and enhancement, as well as superior performance for high-level vision tasks. The source code will be available at https://github.com/House-yuyu/MDDA-former.
Via
Oct 21, 2024
Abstract:Image dehazing has drawn a significant attention in recent years. Learning-based methods usually require paired hazy and corresponding ground truth (haze-free) images for training. However, it is difficult to collect real-world image pairs, which prevents developments of existing methods. Although several works partially alleviate this issue by using synthetic datasets or small-scale real datasets. The haze intensity distribution bias and scene homogeneity in existing datasets limit the generalization ability of these methods, particularly when encountering images with previously unseen haze intensities. In this work, we present LMHaze, a large-scale, high-quality real-world dataset. LMHaze comprises paired hazy and haze-free images captured in diverse indoor and outdoor environments, spanning multiple scenarios and haze intensities. It contains over 5K high-resolution image pairs, surpassing the size of the biggest existing real-world dehazing dataset by over 25 times. Meanwhile, to better handle images with different haze intensities, we propose a mixture-of-experts model based on Mamba (MoE-Mamba) for dehazing, which dynamically adjusts the model parameters according to the haze intensity. Moreover, with our proposed dataset, we conduct a new large multimodal model (LMM)-based benchmark study to simulate human perception for evaluating dehazed images. Experiments demonstrate that LMHaze dataset improves the dehazing performance in real scenarios and our dehazing method provides better results compared to state-of-the-art methods.
Via