What is Image Dehazing? Image dehazing is the process of removing haze or fog from images to improve their visibility.
Papers and Code
Jul 02, 2025
Abstract:Unpaired image dehazing has attracted increasing attention due to its flexible data requirements during model training. Dominant methods based on contrastive learning not only introduce haze-unrelated content information, but also ignore haze-specific properties in the frequency domain (\ie,~haze-related degradation is mainly manifested in the amplitude spectrum). To address these issues, we propose a novel frequency domain-based diffusion model, named \ours, for fully exploiting the beneficial knowledge in unpaired clear data. In particular, inspired by the strong generative ability shown by Diffusion Models (DMs), we tackle the dehazing task from the perspective of frequency domain reconstruction and perform the DMs to yield the amplitude spectrum consistent with the distribution of clear images. To implement it, we propose an Amplitude Residual Encoder (ARE) to extract the amplitude residuals, which effectively compensates for the amplitude gap from the hazy to clear domains, as well as provide supervision for the DMs training. In addition, we propose a Phase Correction Module (PCM) to eliminate artifacts by further refining the phase spectrum during dehazing with a simple attention mechanism. Experimental results demonstrate that our \ours outperforms other state-of-the-art methods on both synthetic and real-world datasets.
* Accepted by ICCV 2025
Via

Jun 15, 2025
Abstract:Overfitting to synthetic training pairs remains a critical challenge in image dehazing, leading to poor generalization capability to real-world scenarios. To address this issue, existing approaches utilize unpaired realistic data for training, employing CycleGAN or contrastive learning frameworks. Despite their progress, these methods often suffer from training instability, resulting in limited dehazing performance. In this paper, we propose a novel training strategy for unpaired image dehazing, termed Rehazy, to improve both dehazing performance and training stability. This strategy explores the consistency of the underlying clean images across hazy images and utilizes hazy-rehazy pairs for effective learning of real haze characteristics. To favorably construct hazy-rehazy pairs, we develop a physics-based rehazy generation pipeline, which is theoretically validated to reliably produce high-quality rehazy images. Additionally, leveraging the rehazy strategy, we introduce a dual-branch framework for dehazing network training, where a clean branch provides a basic dehazing capability in a synthetic manner, and a hazy branch enhances the generalization ability with hazy-rehazy pairs. Moreover, we design a new dehazing network within these branches to improve the efficiency, which progressively restores clean scenes from coarse to fine. Extensive experiments on four benchmarks demonstrate the superior performance of our approach, exceeding the previous state-of-the-art methods by 3.58 dB on the SOTS-Indoor dataset and by 1.85 dB on the SOTS-Outdoor dataset in PSNR. Our code will be publicly available.
Via

Jun 10, 2025
Abstract:This paper presents a novel partial differential equation (PDE) framework for single-image dehazing. By integrating the atmospheric scattering model with nonlocal regularization and dark channel prior, we propose the improved PDE: \[ -\text{div}\left(D(\nabla u)\nabla u\right) + \lambda(t) G(u) = \Phi(I,t,A) \] where $D(\nabla u) = (|\nabla u| + \epsilon)^{-1}$ is the edge-preserving diffusion coefficient, $G(u)$ is the Gaussian convolution operator, and $\lambda(t)$ is the adaptive regularization parameter based on transmission map $t$. We prove the existence and uniqueness of weak solutions in $H_0^1(\Omega)$ using Lax-Milgram theorem, and implement an efficient fixed-point iteration scheme accelerated by PyTorch GPU computation. The experimental results demonstrate that this method is a promising deghazing solution that can be generalized to the deep model paradigm.
* report
Via

May 20, 2025
Abstract:In this paper, we propose an efficient visual transformer framework for ultra-high-definition (UHD) image dehazing that addresses the key challenges of slow training speed and high memory consumption for existing methods. Our approach introduces two key innovations: 1) an \textbf{a}daptive \textbf{n}ormalization mechanism inspired by the nGPT architecture that enables ultra-fast and stable training with a network with a restricted range of parameter expressions; and 2) we devise an atmospheric scattering-aware KV caching mechanism that dynamically optimizes feature preservation based on the physical haze formation model. The proposed architecture improves the training convergence speed by \textbf{5 $\times$} while reducing memory overhead, enabling real-time processing of 50 high-resolution images per second on an RTX4090 GPU. Experimental results show that our approach maintains state-of-the-art dehazing quality while significantly improving computational efficiency for 4K/8K image restoration tasks. Furthermore, we provide a new dehazing image interpretable method with the help of an integrated gradient attribution map. Our code can be found here: https://anonymous.4open.science/r/anDehazeFormer-632E/README.md.
* Under review
Via

May 19, 2025
Abstract:All-in-one image restoration aims to recover clear images from various degradation types and levels with a unified model. Nonetheless, the significant variations among degradation types present challenges for training a universal model, often resulting in task interference, where the gradient update directions of different tasks may diverge due to shared parameters. To address this issue, motivated by the routing strategy, we propose DFPIR, a novel all-in-one image restorer that introduces Degradation-aware Feature Perturbations(DFP) to adjust the feature space to align with the unified parameter space. In this paper, the feature perturbations primarily include channel-wise perturbations and attention-wise perturbations. Specifically, channel-wise perturbations are implemented by shuffling the channels in high-dimensional space guided by degradation types, while attention-wise perturbations are achieved through selective masking in the attention space. To achieve these goals, we propose a Degradation-Guided Perturbation Block (DGPB) to implement these two functions, positioned between the encoding and decoding stages of the encoder-decoder architecture. Extensive experimental results demonstrate that DFPIR achieves state-of-the-art performance on several all-in-one image restoration tasks including image denoising, image dehazing, image deraining, motion deblurring, and low-light image enhancement. Our codes are available at https://github.com/TxpHome/DFPIR.
* Accepted to CVPR 2025. 8 pages, 7 figures
Via

May 22, 2025
Abstract:Ultra-high-definition (UHD) image restoration aims to specifically solve the problem of quality degradation in ultra-high-resolution images. Recent advancements in this field are predominantly driven by deep learning-based innovations, including enhancements in dataset construction, network architecture, sampling strategies, prior knowledge integration, and loss functions. In this paper, we systematically review recent progress in UHD image restoration, covering various aspects ranging from dataset construction to algorithm design. This serves as a valuable resource for understanding state-of-the-art developments in the field. We begin by summarizing degradation models for various image restoration subproblems, such as super-resolution, low-light enhancement, deblurring, dehazing, deraining, and desnowing, and emphasizing the unique challenges of their application to UHD image restoration. We then highlight existing UHD benchmark datasets and organize the literature according to degradation types and dataset construction methods. Following this, we showcase major milestones in deep learning-driven UHD image restoration, reviewing the progression of restoration tasks, technological developments, and evaluations of existing methods. We further propose a classification framework based on network architectures and sampling strategies, helping to clearly organize existing methods. Finally, we share insights into the current research landscape and propose directions for further advancements. A related repository is available at https://github.com/wlydlut/UHD-Image-Restoration-Survey.
* 20 papers, 12 figures
Via

May 07, 2025
Abstract:In this paper, we reveal a novel haze-specific wavelet degradation prior observed through wavelet transform analysis, which shows that haze-related information predominantly resides in low-frequency components. Exploiting this insight, we propose a novel dehazing framework, WDMamba, which decomposes the image dehazing task into two sequential stages: low-frequency restoration followed by detail enhancement. This coarse-to-fine strategy enables WDMamba to effectively capture features specific to each stage of the dehazing process, resulting in high-quality restored images. Specifically, in the low-frequency restoration stage, we integrate Mamba blocks to reconstruct global structures with linear complexity, efficiently removing overall haze and producing a coarse restored image. Thereafter, the detail enhancement stage reinstates fine-grained information that may have been overlooked during the previous phase, culminating in the final dehazed output. Furthermore, to enhance detail retention and achieve more natural dehazing, we introduce a self-guided contrastive regularization during network training. By utilizing the coarse restored output as a hard negative example, our model learns more discriminative representations, substantially boosting the overall dehazing performance. Extensive evaluations on public dehazing benchmarks demonstrate that our method surpasses state-of-the-art approaches both qualitatively and quantitatively. Code is available at https://github.com/SunJ000/WDMamba.
Via

May 08, 2025
Abstract:OpenAI's GPT-4o model, integrating multi-modal inputs and outputs within an autoregressive architecture, has demonstrated unprecedented performance in image generation. In this work, we investigate its potential impact on the image restoration community. We present the first systematic evaluation of GPT-4o across diverse restoration tasks. Our experiments reveal that, although restoration outputs from GPT-4o are visually appealing, they often suffer from pixel-level structural fidelity when compared to ground-truth images. Common issues are variations in image proportions, shifts in object positions and quantities, and changes in viewpoint.To address it, taking image dehazing, derainning, and low-light enhancement as representative case studies, we show that GPT-4o's outputs can serve as powerful visual priors, substantially enhancing the performance of existing dehazing networks. It offers practical guidelines and a baseline framework to facilitate the integration of GPT-4o into future image restoration pipelines. We hope the study on GPT-4o image restoration will accelerate innovation in the broader field of image generation areas. To support further research, we will release GPT-4o-restored images from over 10 widely used image restoration datasets.
Via

Apr 30, 2025
Abstract:Due to the domain gap between real-world and synthetic hazy images, current data-driven dehazing algorithms trained on synthetic datasets perform well on synthetic data but struggle to generalize to real-world scenarios. To address this challenge, we propose \textbf{I}mage \textbf{D}ehazing \textbf{D}iffusion \textbf{M}odels (IDDM), a novel diffusion process that incorporates the atmospheric scattering model into noise diffusion. IDDM aims to use the gradual haze formation process to help the denoising Unet robustly learn the distribution of clear images from the conditional input hazy images. We design a specialized training strategy centered around IDDM. Diffusion models are leveraged to bridge the domain gap from synthetic to real-world, while the atmospheric scattering model provides physical guidance for haze formation. During the forward process, IDDM simultaneously introduces haze and noise into clear images, and then robustly separates them during the sampling process. By training with physics-guided information, IDDM shows the ability of domain generalization, and effectively restores the real-world hazy images despite being trained on synthetic datasets. Extensive experiments demonstrate the effectiveness of our method through both quantitative and qualitative comparisons with state-of-the-art approaches.
Via

Apr 24, 2025
Abstract:Single-image dehazing is an important topic in remote sensing applications, enhancing the quality of acquired images and increasing object detection precision. However, the reliability of such structures has not been sufficiently analyzed, which poses them to the risk of imperceptible perturbations that can significantly hinder their performance. In this work, we show that state-of-the-art image-to-image dehazing transformers are susceptible to adversarial noise, with even 1 pixel change being able to decrease the PSNR by as much as 2.8 dB. Next, we propose two lightweight fine-tuning strategies aimed at increasing the robustness of pre-trained transformers. Our methods results in comparable clean performance, while significantly increasing the protection against adversarial data. We further present their applicability in two remote sensing scenarios, showcasing their robust behavior for out-of-distribution data. The source code for adversarial fine-tuning and attack algorithms can be found at github.com/Vladimirescu/RobustDehazing.
Via
