Abstract:Object detection as a subfield within computer vision has achieved remarkable progress, which aims to accurately identify and locate a specific object from images or videos. Such methods rely on large-scale labeled training samples for each object category to ensure accurate detection, but obtaining extensive annotated data is a labor-intensive and expensive process in many real-world scenarios. To tackle this challenge, researchers have explored few-shot object detection (FSOD) that combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples. This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years and summarize the existing challenges and solutions. Specifically, we first introduce the background and definition of FSOD to emphasize potential value in advancing the field of computer vision. We then propose a novel FSOD taxonomy method and survey the plentifully remarkable FSOD algorithms based on this fact to report a comprehensive overview that facilitates a deeper understanding of the FSOD problem and the development of innovative solutions. Finally, we discuss the advantages and limitations of these algorithms to summarize the challenges, potential research direction, and development trend of object detection in the data scarcity scenario.
Abstract:Cross-domain few-shot classification (CD-FSC) aims to identify novel target classes with a few samples, assuming that there exists a domain shift between source and target domains. Existing state-of-the-art practices typically pre-train on source domain and then finetune on the few-shot target data to yield task-adaptive representations. Despite promising progress, these methods are prone to overfitting the limited target distribution since data-scarcity and ignore the transferable knowledge learned in the source domain. To alleviate this problem, we propose a simple plug-and-play Adaptive Semantic Consistency (ASC) framework, which improves cross-domain robustness by preserving source transfer capability during the finetuning stage. Concretely, we reuse the source images in the pretraining phase and design an adaptive weight assignment strategy to highlight the samples similar to target domain, aiming to aggregate informative target-related knowledge from source domain. Subsequently, a semantic consistency regularization is applied to constrain the consistency between the semantic features of the source images output by the source model and target model. In this way, the proposed ASC enables explicit transfer of source domain knowledge to prevent the model from overfitting the target domain. Extensive experiments on multiple benchmarks demonstrate the effectiveness of the proposed ASC, and ASC provides consistent improvements over the baselines. The source code will be released.
Abstract:This technical report presents our first place winning solution for temporal action detection task in CVPR-2022 AcitivityNet Challenge. The task aims to localize temporal boundaries of action instances with specific classes in long untrimmed videos. Recent mainstream attempts are based on dense boundary matchings and enumerate all possible combinations to produce proposals. We argue that the generated proposals contain rich contextual information, which may benefits detection confidence prediction. To this end, our method mainly consists of the following three steps: 1) action classification and feature extraction by Slowfast, CSN, TimeSformer, TSP, I3D-flow, VGGish-audio, TPN and ViViT; 2) proposal generation. Our proposed Context-aware Proposal Network (CPN) builds on top of BMN, GTAD and PRN to aggregate contextual information by randomly masking some proposal features. 3) action detection. The final detection prediction is calculated by assigning the proposals with corresponding video-level classifcation results. Finally, we ensemble the results under different feature combination settings and achieve 45.8% performance on the test set, which improves the champion result in CVPR-2021 ActivityNet Challenge by 1.1% in terms of average mAP.
Abstract:Recently, many approaches tackle the Unsupervised Domain Adaptive person re-identification (UDA re-ID) problem through pseudo-label-based contrastive learning. During training, a uni-centroid representation is obtained by simply averaging all the instance features from a cluster with the same pseudo label. However, a cluster may contain images with different identities (label noises) due to the imperfect clustering results, which makes the uni-centroid representation inappropriate. In this paper, we present a novel Multi-Centroid Memory (MCM) to adaptively capture different identity information within the cluster. MCM can effectively alleviate the issue of label noises by selecting proper positive/negative centroids for the query image. Moreover, we further propose two strategies to improve the contrastive learning process. First, we present a Domain-Specific Contrastive Learning (DSCL) mechanism to fully explore intradomain information by comparing samples only from the same domain. Second, we propose Second-Order Nearest Interpolation (SONI) to obtain abundant and informative negative samples. We integrate MCM, DSCL, and SONI into a unified framework named Multi-Centroid Representation Network (MCRN). Extensive experiments demonstrate the superiority of MCRN over state-of-the-art approaches on multiple UDA re-ID tasks and fully unsupervised re-ID tasks.
Abstract:Deep learning-based methods for low-light image enhancement typically require enormous paired training data, which are impractical to capture in real-world scenarios. Recently, unsupervised approaches have been explored to eliminate the reliance on paired training data. However, they perform erratically in diverse real-world scenarios due to the absence of priors. To address this issue, we propose an unsupervised low-light image enhancement method based on an effective prior termed histogram equalization prior (HEP). Our work is inspired by the interesting observation that the feature maps of histogram equalization enhanced image and the ground truth are similar. Specifically, we formulate the HEP to provide abundant texture and luminance information. Embedded into a Light Up Module (LUM), it helps to decompose the low-light images into illumination and reflectance maps, and the reflectance maps can be regarded as restored images. However, the derivation based on Retinex theory reveals that the reflectance maps are contaminated by noise. We introduce a Noise Disentanglement Module (NDM) to disentangle the noise and content in the reflectance maps with the reliable aid of unpaired clean images. Guided by the histogram equalization prior and noise disentanglement, our method can recover finer details and is more capable to suppress noise in real-world low-light scenarios. Extensive experiments demonstrate that our method performs favorably against the state-of-the-art unsupervised low-light enhancement algorithms and even matches the state-of-the-art supervised algorithms.
Abstract:The fully convolutional network (FCN) has achieved tremendous success in dense visual recognition tasks, such as scene segmentation. The last layer of FCN is typically a global classifier (1x1 convolution) to recognize each pixel to a semantic label. We empirically show that this global classifier, ignoring the intra-class distinction, may lead to sub-optimal results. In this work, we present a conditional classifier to replace the traditional global classifier, where the kernels of the classifier are generated dynamically conditioned on the input. The main advantages of the new classifier consist of: (i) it attends on the intra-class distinction, leading to stronger dense recognition capability; (ii) the conditional classifier is simple and flexible to be integrated into almost arbitrary FCN architectures to improve the prediction. Extensive experiments demonstrate that the proposed classifier performs favourably against the traditional classifier on the FCN architecture. The framework equipped with the conditional classifier (called CondNet) achieves new state-of-the-art performances on two datasets. The code and models are available at https://git.io/CondNet.
Abstract:Most recent approaches for online action detection tend to apply Recurrent Neural Network (RNN) to capture long-range temporal structure. However, RNN suffers from non-parallelism and gradient vanishing, hence it is hard to be optimized. In this paper, we propose a new encoder-decoder framework based on Transformers, named OadTR, to tackle these problems. The encoder attached with a task token aims to capture the relationships and global interactions between historical observations. The decoder extracts auxiliary information by aggregating anticipated future clip representations. Therefore, OadTR can recognize current actions by encoding historical information and predicting future context simultaneously. We extensively evaluate the proposed OadTR on three challenging datasets: HDD, TVSeries, and THUMOS14. The experimental results show that OadTR achieves higher training and inference speeds than current RNN based approaches, and significantly outperforms the state-of-the-art methods in terms of both mAP and mcAP. Code is available at https://github.com/wangxiang1230/OadTR.
Abstract:Weakly-Supervised Temporal Action Localization (WS-TAL) task aims to recognize and localize temporal starts and ends of action instances in an untrimmed video with only video-level label supervision. Due to lack of negative samples of background category, it is difficult for the network to separate foreground and background, resulting in poor detection performance. In this report, we present our 2021 HACS Challenge - Weakly-supervised Learning Track solution that based on BaSNet to address above problem. Specifically, we first adopt pre-trained CSN, Slowfast, TDN, and ViViT as feature extractors to get feature sequences. Then our proposed Local-Global Background Modeling Network (LGBM-Net) is trained to localize instances by using only video-level labels based on Multi-Instance Learning (MIL). Finally, we ensemble multiple models to get the final detection results and reach 22.45% mAP on the test set
Abstract:Self-supervised learning presents a remarkable performance to utilize unlabeled data for various video tasks. In this paper, we focus on applying the power of self-supervised methods to improve semi-supervised action proposal generation. Particularly, we design an effective Self-supervised Semi-supervised Temporal Action Proposal (SSTAP) framework. The SSTAP contains two crucial branches, i.e., temporal-aware semi-supervised branch and relation-aware self-supervised branch. The semi-supervised branch improves the proposal model by introducing two temporal perturbations, i.e., temporal feature shift and temporal feature flip, in the mean teacher framework. The self-supervised branch defines two pretext tasks, including masked feature reconstruction and clip-order prediction, to learn the relation of temporal clues. By this means, SSTAP can better explore unlabeled videos, and improve the discriminative abilities of learned action features. We extensively evaluate the proposed SSTAP on THUMOS14 and ActivityNet v1.3 datasets. The experimental results demonstrate that SSTAP significantly outperforms state-of-the-art semi-supervised methods and even matches fully-supervised methods. Code is available at https://github.com/wangxiang1230/SSTAP.
Abstract:Image dehazing using learning-based methods has achieved state-of-the-art performance in recent years. However, most existing methods train a dehazing model on synthetic hazy images, which are less able to generalize well to real hazy images due to domain shift. To address this issue, we propose a domain adaptation paradigm, which consists of an image translation module and two image dehazing modules. Specifically, we first apply a bidirectional translation network to bridge the gap between the synthetic and real domains by translating images from one domain to another. And then, we use images before and after translation to train the proposed two image dehazing networks with a consistency constraint. In this phase, we incorporate the real hazy image into the dehazing training via exploiting the properties of the clear image (e.g., dark channel prior and image gradient smoothing) to further improve the domain adaptivity. By training image translation and dehazing network in an end-to-end manner, we can obtain better effects of both image translation and dehazing. Experimental results on both synthetic and real-world images demonstrate that our model performs favorably against the state-of-the-art dehazing algorithms.