Abstract:Collaborative perception significantly enhances individual vehicle perception performance through the exchange of sensory information among agents. However, real-world deployment faces challenges due to bandwidth constraints and inevitable calibration errors during information exchange. To address these issues, we propose mmCooper, a novel multi-agent, multi-stage, communication-efficient, and collaboration-robust cooperative perception framework. Our framework leverages a multi-stage collaboration strategy that dynamically and adaptively balances intermediate- and late-stage information to share among agents, enhancing perceptual performance while maintaining communication efficiency. To support robust collaboration despite potential misalignments and calibration errors, our framework captures multi-scale contextual information for robust fusion in the intermediate stage and calibrates the received detection results to improve accuracy in the late stage. We validate the effectiveness of mmCooper through extensive experiments on real-world and simulated datasets. The results demonstrate the superiority of our proposed framework and the effectiveness of each component.
Abstract:Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
Abstract:Action detection in real-world scenarios is particularly challenging due to densely distributed actions in hour-long untrimmed videos. It requires modeling both short- and long-term temporal relationships while handling significant intra-class temporal variations. Previous state-of-the-art (SOTA) Transformer-based architectures, though effective, are impractical for real-world deployment due to their high parameter count, GPU memory usage, and limited throughput, making them unsuitable for very long videos. In this work, we innovatively adapt the Mamba architecture for action detection and propose Multi-scale Temporal Mamba (MS-Temba), comprising two key components: Temporal Mamba (Temba) Blocks and the Temporal Mamba Fuser. Temba Blocks include the Temporal Local Module (TLM) for short-range temporal modeling and the Dilated Temporal SSM (DTS) for long-range dependencies. By introducing dilations, a novel concept for Mamba, TLM and DTS capture local and global features at multiple scales. The Temba Fuser aggregates these scale-specific features using Mamba to learn comprehensive multi-scale representations of untrimmed videos. MS-Temba is validated on three public datasets, outperforming SOTA methods on long videos and matching prior methods on short videos while using only one-eighth of the parameters.
Abstract:Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc. However, it suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation. To cope with the label deficiency issue, one common solution is to train the HPE models with easily available synthetic datasets (source) and apply them to real-world data (target) through domain adaptation (DA). Unfortunately, prevailing domain adaptation techniques within the HPE domain remain predominantly fixated on effecting alignment and aggregation between source and target features, often sidestepping the crucial task of excluding domain-specific representations. To rectify this, we introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation. Within this framework, we address the network architecture aspect by disentangling representations into distinct domain-invariant and domain-specific components, facilitating aggregation of domain-invariant features while simultaneously segregating domain-specific ones. Moreover, we tackle the discrepancy measurement facet by delving into various keypoint relationships and applying separate aggregation or segregation mechanisms to enhance alignment. Extensive experiments on various benchmarks, e.g., Human3.6M, LSP, H3D, and FreiHand, show that our method consistently achieves state-of-the-art performance. The project is available at \url{https://github.com/davidpengucf/EPIC}.
Abstract:Human mesh recovery (HMR) is crucial in many computer vision applications; from health to arts and entertainment. HMR from monocular images has predominantly been addressed by deterministic methods that output a single prediction for a given 2D image. However, HMR from a single image is an ill-posed problem due to depth ambiguity and occlusions. Probabilistic methods have attempted to address this by generating and fusing multiple plausible 3D reconstructions, but their performance has often lagged behind deterministic approaches. In this paper, we introduce GenHMR, a novel generative framework that reformulates monocular HMR as an image-conditioned generative task, explicitly modeling and mitigating uncertainties in the 2D-to-3D mapping process. GenHMR comprises two key components: (1) a pose tokenizer to convert 3D human poses into a sequence of discrete tokens in a latent space, and (2) an image-conditional masked transformer to learn the probabilistic distributions of the pose tokens, conditioned on the input image prompt along with randomly masked token sequence. During inference, the model samples from the learned conditional distribution to iteratively decode high-confidence pose tokens, thereby reducing 3D reconstruction uncertainties. To further refine the reconstruction, a 2D pose-guided refinement technique is proposed to directly fine-tune the decoded pose tokens in the latent space, which forces the projected 3D body mesh to align with the 2D pose clues. Experiments on benchmark datasets demonstrate that GenHMR significantly outperforms state-of-the-art methods. Project website can be found at https://m-usamasaleem.github.io/publication/GenHMR/GenHMR.html
Abstract:Reconstructing a 3D hand mesh from a single RGB image is challenging due to complex articulations, self-occlusions, and depth ambiguities. Traditional discriminative methods, which learn a deterministic mapping from a 2D image to a single 3D mesh, often struggle with the inherent ambiguities in 2D-to-3D mapping. To address this challenge, we propose MMHMR, a novel generative masked model for hand mesh recovery that synthesizes plausible 3D hand meshes by learning and sampling from the probabilistic distribution of the ambiguous 2D-to-3D mapping process. MMHMR consists of two key components: (1) a VQ-MANO, which encodes 3D hand articulations as discrete pose tokens in a latent space, and (2) a Context-Guided Masked Transformer that randomly masks out pose tokens and learns their joint distribution, conditioned on corrupted token sequences, image context, and 2D pose cues. This learned distribution facilitates confidence-guided sampling during inference, producing mesh reconstructions with low uncertainty and high precision. Extensive evaluations on benchmark and real-world datasets demonstrate that MMHMR achieves state-of-the-art accuracy, robustness, and realism in 3D hand mesh reconstruction. Project website: https://m-usamasaleem.github.io/publication/MMHMR/mmhmr.html
Abstract:End-to-end transformer-based automatic speech recognition (ASR) systems often capture multiple speech traits in their learned representations that are highly entangled, leading to a lack of interpretability. In this study, we propose the explainable Disentangled-Transformer, which disentangles the internal representations into sub-embeddings with explicit content and speaker traits based on varying temporal resolutions. Experimental results show that the proposed Disentangled-Transformer produces a clear speaker identity, separated from the speech content, for speaker diarization while improving ASR performance.
Abstract:Recent advances in motion diffusion models have enabled spatially controllable text-to-motion generation. However, despite achieving acceptable control precision, these models suffer from generation speed and fidelity limitations. To address these challenges, we propose ControlMM, a novel approach incorporating spatial control signals into the generative masked motion model. ControlMM achieves real-time, high-fidelity, and high-precision controllable motion generation simultaneously. Our approach introduces two key innovations. First, we propose masked consistency modeling, which ensures high-fidelity motion generation via random masking and reconstruction, while minimizing the inconsistency between the input control signals and the extracted control signals from the generated motion. To further enhance control precision, we introduce inference-time logit editing, which manipulates the predicted conditional motion distribution so that the generated motion, sampled from the adjusted distribution, closely adheres to the input control signals. During inference, ControlMM enables parallel and iterative decoding of multiple motion tokens, allowing for high-speed motion generation. Extensive experiments show that, compared to the state of the art, ControlMM delivers superior results in motion quality, with better FID scores (0.061 vs 0.271), and higher control precision (average error 0.0091 vs 0.0108). ControlMM generates motions 20 times faster than diffusion-based methods. Additionally, ControlMM unlocks diverse applications such as any joint any frame control, body part timeline control, and obstacle avoidance. Video visualization can be found at https://exitudio.github.io/ControlMM-page
Abstract:Previous studies on federated learning (FL) often encounter performance degradation due to data heterogeneity among different clients. In light of the recent advances in multimodal large language models (MLLMs), such as GPT-4v and LLaVA, which demonstrate their exceptional proficiency in multimodal tasks, such as image captioning and multimodal question answering. We introduce a novel federated learning framework, named Multimodal Large Language Model Assisted Federated Learning (MLLM-FL), which which employs powerful MLLMs at the server end to address the heterogeneous and long-tailed challenges. Owing to the advanced cross-modality representation capabilities and the extensive open-vocabulary prior knowledge of MLLMs, our framework is adept at harnessing the extensive, yet previously underexploited, open-source data accessible from websites and powerful server-side computational resources. Hence, the MLLM-FL not only enhances the performance but also avoids increasing the risk of privacy leakage and the computational burden on local devices, distinguishing it from prior methodologies. Our framework has three key stages. Initially, prior to local training on local datasets of clients, we conduct global visual-text pretraining of the model. This pretraining is facilitated by utilizing the extensive open-source data available online, with the assistance of multimodal large language models. Subsequently, the pretrained model is distributed among various clients for local training. Finally, once the locally trained models are transmitted back to the server, a global alignment is carried out under the supervision of MLLMs to further enhance the performance. Experimental evaluations on established benchmarks, show that our framework delivers promising performance in the typical scenarios with data heterogeneity and long-tail distribution across different clients in FL.
Abstract:The increasing rate of road accidents worldwide results not only in significant loss of life but also imposes billions financial burdens on societies. Current research in traffic crash frequency modeling and analysis has predominantly approached the problem as classification tasks, focusing mainly on learning-based classification or ensemble learning methods. These approaches often overlook the intricate relationships among the complex infrastructure, environmental, human and contextual factors related to traffic crashes and risky situations. In contrast, we initially propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports and incorporating infrastructure data, environmental and traffic textual and visual information in Washington State. Leveraging this rich dataset, we further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes, such as crash types, severity and number of injuries, based on contextual and environmental factors. The proposed model, CrashLLM, distinguishes itself from existing solutions by leveraging the inherent text reasoning capabilities of LLMs to parse and learn from complex, unstructured data, thereby enabling a more nuanced analysis of contributing factors. Our experiments results shows that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes, all with averaged F1 score boosted from 34.9% to 53.8%. Furthermore, CrashLLM can provide valuable insights for numerous open-world what-if situational-awareness traffic safety analyses with learned reasoning features, which existing models cannot offer. We make our benchmark, datasets, and model public available for further exploration.