Abstract:Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
Abstract:In this study, we conduct a comprehensive review of smart grid security, exploring system architectures, attack methodologies, defense strategies, and future research opportunities. We provide an in-depth analysis of various attack vectors, focusing on new attack surfaces introduced by advanced components in smart grids. The review particularly includes an extensive analysis of coordinated attacks that incorporate multiple attack strategies and exploit vulnerabilities across various smart grid components to increase their adverse impact, demonstrating the complexity and potential severity of these threats. Following this, we examine innovative detection and mitigation strategies, including game theory, graph theory, blockchain, and machine learning, discussing their advancements in counteracting evolving threats and associated research challenges. In particular, our review covers a thorough examination of widely used machine learning-based mitigation strategies, analyzing their applications and research challenges spanning across supervised, unsupervised, semi-supervised, ensemble, and reinforcement learning. Further, we outline future research directions and explore new techniques and concerns. We first discuss the research opportunities for existing and emerging strategies, and then explore the potential role of new techniques, such as large language models (LLMs), and the emerging threat of adversarial machine learning in the future of smart grid security.