Abstract:Histopathological image classification constitutes a pivotal task in computer-aided diagnostics. The precise identification and categorization of histopathological images are of paramount significance for early disease detection and treatment. In the diagnostic process of pathologists, a multi-tiered approach is typically employed to assess abnormalities in cell regions at different magnifications. However, feature extraction is often performed at a single granularity, overlooking the multi-granular characteristics of cells. To address this issue, we propose the Fuzzy-guided Multi-granularity Deep Neural Network (FMDNN). Inspired by the multi-granular diagnostic approach of pathologists, we perform feature extraction on cell structures at coarse, medium, and fine granularity, enabling the model to fully harness the information in histopathological images. We incorporate the theory of fuzzy logic to address the challenge of redundant key information arising during multi-granular feature extraction. Cell features are described from different perspectives using multiple fuzzy membership functions, which are fused to create universal fuzzy features. A fuzzy-guided cross-attention module guides universal fuzzy features toward multi-granular features. We propagate these features through an encoder to all patch tokens, aiming to achieve enhanced classification accuracy and robustness. In experiments on multiple public datasets, our model exhibits a significant improvement in accuracy over commonly used classification methods for histopathological image classification and shows commendable interpretability.
Abstract:In this study, we conduct a comprehensive review of smart grid security, exploring system architectures, attack methodologies, defense strategies, and future research opportunities. We provide an in-depth analysis of various attack vectors, focusing on new attack surfaces introduced by advanced components in smart grids. The review particularly includes an extensive analysis of coordinated attacks that incorporate multiple attack strategies and exploit vulnerabilities across various smart grid components to increase their adverse impact, demonstrating the complexity and potential severity of these threats. Following this, we examine innovative detection and mitigation strategies, including game theory, graph theory, blockchain, and machine learning, discussing their advancements in counteracting evolving threats and associated research challenges. In particular, our review covers a thorough examination of widely used machine learning-based mitigation strategies, analyzing their applications and research challenges spanning across supervised, unsupervised, semi-supervised, ensemble, and reinforcement learning. Further, we outline future research directions and explore new techniques and concerns. We first discuss the research opportunities for existing and emerging strategies, and then explore the potential role of new techniques, such as large language models (LLMs), and the emerging threat of adversarial machine learning in the future of smart grid security.
Abstract:With the proliferation of IoT devices, researchers have developed a variety of IoT device identification methods with the assistance of machine learning. Nevertheless, the security of these identification methods mostly depends on collected training data. In this research, we propose a novel attack strategy named IoTGAN to manipulate an IoT device's traffic such that it can evade machine learning based IoT device identification. In the development of IoTGAN, we have two major technical challenges: (i) How to obtain the discriminative model in a black-box setting, and (ii) How to add perturbations to IoT traffic through the manipulative model, so as to evade the identification while not influencing the functionality of IoT devices. To address these challenges, a neural network based substitute model is used to fit the target model in black-box settings, it works as a discriminative model in IoTGAN. A manipulative model is trained to add adversarial perturbations into the IoT device's traffic to evade the substitute model. Experimental results show that IoTGAN can successfully achieve the attack goals. We also develop efficient countermeasures to protect machine learning based IoT device identification from been undermined by IoTGAN.