Abstract:Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
Abstract:Action detection in real-world scenarios is particularly challenging due to densely distributed actions in hour-long untrimmed videos. It requires modeling both short- and long-term temporal relationships while handling significant intra-class temporal variations. Previous state-of-the-art (SOTA) Transformer-based architectures, though effective, are impractical for real-world deployment due to their high parameter count, GPU memory usage, and limited throughput, making them unsuitable for very long videos. In this work, we innovatively adapt the Mamba architecture for action detection and propose Multi-scale Temporal Mamba (MS-Temba), comprising two key components: Temporal Mamba (Temba) Blocks and the Temporal Mamba Fuser. Temba Blocks include the Temporal Local Module (TLM) for short-range temporal modeling and the Dilated Temporal SSM (DTS) for long-range dependencies. By introducing dilations, a novel concept for Mamba, TLM and DTS capture local and global features at multiple scales. The Temba Fuser aggregates these scale-specific features using Mamba to learn comprehensive multi-scale representations of untrimmed videos. MS-Temba is validated on three public datasets, outperforming SOTA methods on long videos and matching prior methods on short videos while using only one-eighth of the parameters.
Abstract:Reconstructing a 3D hand mesh from a single RGB image is challenging due to complex articulations, self-occlusions, and depth ambiguities. Traditional discriminative methods, which learn a deterministic mapping from a 2D image to a single 3D mesh, often struggle with the inherent ambiguities in 2D-to-3D mapping. To address this challenge, we propose MMHMR, a novel generative masked model for hand mesh recovery that synthesizes plausible 3D hand meshes by learning and sampling from the probabilistic distribution of the ambiguous 2D-to-3D mapping process. MMHMR consists of two key components: (1) a VQ-MANO, which encodes 3D hand articulations as discrete pose tokens in a latent space, and (2) a Context-Guided Masked Transformer that randomly masks out pose tokens and learns their joint distribution, conditioned on corrupted token sequences, image context, and 2D pose cues. This learned distribution facilitates confidence-guided sampling during inference, producing mesh reconstructions with low uncertainty and high precision. Extensive evaluations on benchmark and real-world datasets demonstrate that MMHMR achieves state-of-the-art accuracy, robustness, and realism in 3D hand mesh reconstruction. Project website: https://m-usamasaleem.github.io/publication/MMHMR/mmhmr.html
Abstract:In this paper, we compare various image background subtraction algorithms with the ground truth of cars counted. We have given a sample of thousand images, which are the snap shots of current traffic as records at various intersections and highways. We have also counted an approximate number of cars that are visible in these images. In order to ascertain the accuracy of algorithms to be used for the processing of million images, we compare them on many metrics that includes (i) Scalability (ii) Accuracy (iii) Processing time.
Abstract:There have been significant recent advances in mobile networks, specifically in multi-hop wireless networks including DTNs and sensor networks. It is critical to have a testing environment to realistically evaluate such networks and their protocols and services. Towards this goal, we propose a novel, mobile testbed of two main components. The first consists of a network of robots with personality- mimicking, human-encounter behaviors, which will be the focus of this demo. The personality is build upon behavioral profiling of mobile users based on extensive wireless-network measurements and analysis. The second component combines the testbed with the human society using a new concept that we refer to as participatory testing utilizing crowd sourcing.