Abstract:Human mesh recovery (HMR) is crucial in many computer vision applications; from health to arts and entertainment. HMR from monocular images has predominantly been addressed by deterministic methods that output a single prediction for a given 2D image. However, HMR from a single image is an ill-posed problem due to depth ambiguity and occlusions. Probabilistic methods have attempted to address this by generating and fusing multiple plausible 3D reconstructions, but their performance has often lagged behind deterministic approaches. In this paper, we introduce GenHMR, a novel generative framework that reformulates monocular HMR as an image-conditioned generative task, explicitly modeling and mitigating uncertainties in the 2D-to-3D mapping process. GenHMR comprises two key components: (1) a pose tokenizer to convert 3D human poses into a sequence of discrete tokens in a latent space, and (2) an image-conditional masked transformer to learn the probabilistic distributions of the pose tokens, conditioned on the input image prompt along with randomly masked token sequence. During inference, the model samples from the learned conditional distribution to iteratively decode high-confidence pose tokens, thereby reducing 3D reconstruction uncertainties. To further refine the reconstruction, a 2D pose-guided refinement technique is proposed to directly fine-tune the decoded pose tokens in the latent space, which forces the projected 3D body mesh to align with the 2D pose clues. Experiments on benchmark datasets demonstrate that GenHMR significantly outperforms state-of-the-art methods. Project website can be found at https://m-usamasaleem.github.io/publication/GenHMR/GenHMR.html
Abstract:Reconstructing a 3D hand mesh from a single RGB image is challenging due to complex articulations, self-occlusions, and depth ambiguities. Traditional discriminative methods, which learn a deterministic mapping from a 2D image to a single 3D mesh, often struggle with the inherent ambiguities in 2D-to-3D mapping. To address this challenge, we propose MMHMR, a novel generative masked model for hand mesh recovery that synthesizes plausible 3D hand meshes by learning and sampling from the probabilistic distribution of the ambiguous 2D-to-3D mapping process. MMHMR consists of two key components: (1) a VQ-MANO, which encodes 3D hand articulations as discrete pose tokens in a latent space, and (2) a Context-Guided Masked Transformer that randomly masks out pose tokens and learns their joint distribution, conditioned on corrupted token sequences, image context, and 2D pose cues. This learned distribution facilitates confidence-guided sampling during inference, producing mesh reconstructions with low uncertainty and high precision. Extensive evaluations on benchmark and real-world datasets demonstrate that MMHMR achieves state-of-the-art accuracy, robustness, and realism in 3D hand mesh reconstruction. Project website: https://m-usamasaleem.github.io/publication/MMHMR/mmhmr.html
Abstract:Recent advances in motion diffusion models have enabled spatially controllable text-to-motion generation. However, despite achieving acceptable control precision, these models suffer from generation speed and fidelity limitations. To address these challenges, we propose ControlMM, a novel approach incorporating spatial control signals into the generative masked motion model. ControlMM achieves real-time, high-fidelity, and high-precision controllable motion generation simultaneously. Our approach introduces two key innovations. First, we propose masked consistency modeling, which ensures high-fidelity motion generation via random masking and reconstruction, while minimizing the inconsistency between the input control signals and the extracted control signals from the generated motion. To further enhance control precision, we introduce inference-time logit editing, which manipulates the predicted conditional motion distribution so that the generated motion, sampled from the adjusted distribution, closely adheres to the input control signals. During inference, ControlMM enables parallel and iterative decoding of multiple motion tokens, allowing for high-speed motion generation. Extensive experiments show that, compared to the state of the art, ControlMM delivers superior results in motion quality, with better FID scores (0.061 vs 0.271), and higher control precision (average error 0.0091 vs 0.0108). ControlMM generates motions 20 times faster than diffusion-based methods. Additionally, ControlMM unlocks diverse applications such as any joint any frame control, body part timeline control, and obstacle avoidance. Video visualization can be found at https://exitudio.github.io/ControlMM-page
Abstract:Generating human motion from text has been dominated by denoising motion models either through diffusion or generative masking process. However, these models face great limitations in usability by requiring prior knowledge of the motion length. Conversely, autoregressive motion models address this limitation by adaptively predicting motion endpoints, at the cost of degraded generation quality and editing capabilities. To address these challenges, we propose Bidirectional Autoregressive Motion Model (BAMM), a novel text-to-motion generation framework. BAMM consists of two key components: (1) a motion tokenizer that transforms 3D human motion into discrete tokens in latent space, and (2) a masked self-attention transformer that autoregressively predicts randomly masked tokens via a hybrid attention masking strategy. By unifying generative masked modeling and autoregressive modeling, BAMM captures rich and bidirectional dependencies among motion tokens, while learning the probabilistic mapping from textual inputs to motion outputs with dynamically-adjusted motion sequence length. This feature enables BAMM to simultaneously achieving high-quality motion generation with enhanced usability and built-in motion editability. Extensive experiments on HumanML3D and KIT-ML datasets demonstrate that BAMM surpasses current state-of-the-art methods in both qualitative and quantitative measures. Our project page is available at https://exitudio.github.io/BAMM-page
Abstract:Recent advances in text-to-motion generation using diffusion and autoregressive models have shown promising results. However, these models often suffer from a trade-off between real-time performance, high fidelity, and motion editability. To address this gap, we introduce MMM, a novel yet simple motion generation paradigm based on Masked Motion Model. MMM consists of two key components: (1) a motion tokenizer that transforms 3D human motion into a sequence of discrete tokens in latent space, and (2) a conditional masked motion transformer that learns to predict randomly masked motion tokens, conditioned on the pre-computed text tokens. By attending to motion and text tokens in all directions, MMM explicitly captures inherent dependency among motion tokens and semantic mapping between motion and text tokens. During inference, this allows parallel and iterative decoding of multiple motion tokens that are highly consistent with fine-grained text descriptions, therefore simultaneously achieving high-fidelity and high-speed motion generation. In addition, MMM has innate motion editability. By simply placing mask tokens in the place that needs editing, MMM automatically fills the gaps while guaranteeing smooth transitions between editing and non-editing parts. Extensive experiments on the HumanML3D and KIT-ML datasets demonstrate that MMM surpasses current leading methods in generating high-quality motion (evidenced by superior FID scores of 0.08 and 0.429), while offering advanced editing features such as body-part modification, motion in-betweening, and the synthesis of long motion sequences. In addition, MMM is two orders of magnitude faster on a single mid-range GPU than editable motion diffusion models. Our project page is available at \url{https://exitudio.github.io/MMM-page}.
Abstract:mmWave radar-based gait recognition is a novel user identification method that captures human gait biometrics from mmWave radar return signals. This technology offers privacy protection and is resilient to weather and lighting conditions. However, its generalization performance is yet unknown and limits its practical deployment. To address this problem, in this paper, a non-synthetic dataset is collected and analyzed to reveal the presence of spatial and temporal domain shifts in mmWave gait biometric data, which significantly impacts identification accuracy. To address this issue, a novel self-aligned domain adaptation method called GaitSADA is proposed. GaitSADA improves system generalization performance by using a two-stage semi-supervised model training approach. The first stage uses semi-supervised contrastive learning and the second stage uses semi-supervised consistency training with centroid alignment. Extensive experiments show that GaitSADA outperforms representative domain adaptation methods by an average of 15.41% in low data regimes.
Abstract:In this research, we address the challenge faced by existing deep learning-based human mesh reconstruction methods in balancing accuracy and computational efficiency. These methods typically prioritize accuracy, resulting in large network sizes and excessive computational complexity, which may hinder their practical application in real-world scenarios, such as virtual reality systems. To address this issue, we introduce a modular multi-stage lightweight graph-based transformer network for human pose and shape estimation from 2D human pose, a pose-based human mesh reconstruction approach that prioritizes computational efficiency without sacrificing reconstruction accuracy. Our method consists of a 2D-to-3D lifter module that utilizes graph transformers to analyze structured and implicit joint correlations in 2D human poses, and a mesh regression module that combines the extracted pose features with a mesh template to produce the final human mesh parameters.
Abstract:Recently, there has been a remarkable increase in the interest towards skeleton-based action recognition within the research community, owing to its various advantageous features, including computational efficiency, representative features, and illumination invariance. Despite this, researchers continue to explore and investigate the most optimal way to represent human actions through skeleton representation and the extracted features. As a result, the growth and availability of human action recognition datasets have risen substantially. In addition, deep learning-based algorithms have gained widespread popularity due to the remarkable advancements in various computer vision tasks. Most state-of-the-art contributions in skeleton-based action recognition incorporate a Graph Neural Network (GCN) architecture for representing the human body and extracting features. Our research demonstrates that Convolutional Neural Networks (CNNs) can attain comparable results to GCN, provided that the proper training techniques, augmentations, and optimizers are applied. Our approach has been rigorously validated, and we have achieved a score of 95% on the NTU-60 dataset
Abstract:Most existing gait recognition methods are appearance-based, which rely on the silhouettes extracted from the video data of human walking activities. The less-investigated skeleton-based gait recognition methods directly learn the gait dynamics from 2D/3D human skeleton sequences, which are theoretically more robust solutions in the presence of appearance changes caused by clothes, hairstyles, and carrying objects. However, the performance of skeleton-based solutions is still largely behind the appearance-based ones. This paper aims to close such performance gap by proposing a novel network model, GaitMixer, to learn more discriminative gait representation from skeleton sequence data. In particular, GaitMixer follows a heterogeneous multi-axial mixer architecture, which exploits the spatial self-attention mixer followed by the temporal large-kernel convolution mixer to learn rich multi-frequency signals in the gait feature maps. Experiments on the widely used gait database, CASIA-B, demonstrate that GaitMixer outperforms the previous SOTA skeleton-based methods by a large margin while achieving a competitive performance compared with the representative appearance-based solutions. Code will be available at https://github.com/exitudio/gaitmixer