Abstract:Action detection in real-world scenarios is particularly challenging due to densely distributed actions in hour-long untrimmed videos. It requires modeling both short- and long-term temporal relationships while handling significant intra-class temporal variations. Previous state-of-the-art (SOTA) Transformer-based architectures, though effective, are impractical for real-world deployment due to their high parameter count, GPU memory usage, and limited throughput, making them unsuitable for very long videos. In this work, we innovatively adapt the Mamba architecture for action detection and propose Multi-scale Temporal Mamba (MS-Temba), comprising two key components: Temporal Mamba (Temba) Blocks and the Temporal Mamba Fuser. Temba Blocks include the Temporal Local Module (TLM) for short-range temporal modeling and the Dilated Temporal SSM (DTS) for long-range dependencies. By introducing dilations, a novel concept for Mamba, TLM and DTS capture local and global features at multiple scales. The Temba Fuser aggregates these scale-specific features using Mamba to learn comprehensive multi-scale representations of untrimmed videos. MS-Temba is validated on three public datasets, outperforming SOTA methods on long videos and matching prior methods on short videos while using only one-eighth of the parameters.
Abstract:Large Language Vision Models (LLVMs) have demonstrated effectiveness in processing internet videos, yet they struggle with the visually perplexing dynamics present in Activities of Daily Living (ADL) due to limited pertinent datasets and models tailored to relevant cues. To this end, we propose a framework for curating ADL multiview datasets to fine-tune LLVMs, resulting in the creation of ADL-X, comprising 100K RGB video-instruction pairs, language descriptions, 3D skeletons, and action-conditioned object trajectories. We introduce LLAVIDAL, an LLVM capable of incorporating 3D poses and relevant object trajectories to understand the intricate spatiotemporal relationships within ADLs. Furthermore, we present a novel benchmark, ADLMCQ, for quantifying LLVM effectiveness in ADL scenarios. When trained on ADL-X, LLAVIDAL consistently achieves state-of-the-art performance across all ADL evaluation metrics. Qualitative analysis reveals LLAVIDAL's temporal reasoning capabilities in understanding ADL. The link to the dataset is provided at: https://adl-x.github.io/