Abstract:Large language model (LLM) agents have demonstrated impressive capability in utilizing external tools and knowledge to boost accuracy and reduce hallucinations. However, developing the prompting techniques that make LLM agents able to effectively use external tools and knowledge is a heuristic and laborious task. Here, we introduce AvaTaR, a novel and automatic framework that optimizes an LLM agent to effectively use the provided tools and improve its performance on a given task/domain. During optimization, we design a comparator module to iteratively provide insightful and holistic prompts to the LLM agent via reasoning between positive and negative examples sampled from training data. We demonstrate AvaTaR on four complex multimodal retrieval datasets featuring textual, visual, and relational information. We find AvaTaR consistently outperforms state-of-the-art approaches across all four challenging tasks and exhibits strong generalization ability when applied to novel cases, achieving an average relative improvement of 14% on the Hit@1 metric. Code and dataset are available at https://github.com/zou-group/avatar.
Abstract:Despite the remarkable success of Large Language Models (LLMs) in text understanding and generation, their potential for text clustering tasks remains underexplored. We observed that powerful closed-source LLMs provide good quality clusterings of entity sets but are not scalable due to the massive compute power required and the associated costs. Thus, we propose CACTUS (Context-Aware ClusTering with aUgmented triplet losS), a systematic approach that leverages open-source LLMs for efficient and effective supervised clustering of entity subsets, particularly focusing on text-based entities. Existing text clustering methods fail to effectively capture the context provided by the entity subset. Moreover, though there are several language modeling based approaches for clustering, very few are designed for the task of supervised clustering. This paper introduces a novel approach towards clustering entity subsets using LLMs by capturing context via a scalable inter-entity attention mechanism. We propose a novel augmented triplet loss function tailored for supervised clustering, which addresses the inherent challenges of directly applying the triplet loss to this problem. Furthermore, we introduce a self-supervised clustering task based on text augmentation techniques to improve the generalization of our model. For evaluation, we collect ground truth clusterings from a closed-source LLM and transfer this knowledge to an open-source LLM under the supervised clustering framework, allowing a faster and cheaper open-source model to perform the same task. Experiments on various e-commerce query and product clustering datasets demonstrate that our proposed approach significantly outperforms existing unsupervised and supervised baselines under various external clustering evaluation metrics.
Abstract:Answering real-world user queries, such as product search, often requires accurate retrieval of information from semi-structured knowledge bases or databases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. We design a novel pipeline to synthesize natural and realistic user queries that integrate diverse relational information and complex textual properties, as well as their ground-truth answers. Moreover, we rigorously conduct human evaluation to validate the quality of our benchmark, which covers a variety of practical applications, including product recommendations, academic paper searches, and precision medicine inquiries. Our benchmark serves as a comprehensive testbed for evaluating the performance of retrieval systems, with an emphasis on retrieval approaches driven by large language models (LLMs). Our experiments suggest that the STARK datasets present significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems that can handle both textual and relational aspects.
Abstract:Given a node-attributed graph, and a graph task (link prediction or node classification), can we tell if a graph neural network (GNN) will perform well? More specifically, do the graph structure and the node features carry enough usable information for the task? Our goals are (1) to develop a fast tool to measure how much information is in the graph structure and in the node features, and (2) to exploit the information to solve the task, if there is enough. We propose NetInfoF, a framework including NetInfoF_Probe and NetInfoF_Act, for the measurement and the exploitation of network usable information (NUI), respectively. Given a graph data, NetInfoF_Probe measures NUI without any model training, and NetInfoF_Act solves link prediction and node classification, while two modules share the same backbone. In summary, NetInfoF has following notable advantages: (a) General, handling both link prediction and node classification; (b) Principled, with theoretical guarantee and closed-form solution; (c) Effective, thanks to the proposed adjustment to node similarity; (d) Scalable, scaling linearly with the input size. In our carefully designed synthetic datasets, NetInfoF correctly identifies the ground truth of NUI and is the only method being robust to all graph scenarios. Applied on real-world datasets, NetInfoF wins in 11 out of 12 times on link prediction compared to general GNN baselines.
Abstract:Foundation models (FMs) are able to leverage large volumes of unlabeled data to demonstrate superior performance across a wide range of tasks. However, FMs developed for biomedical domains have largely remained unimodal, i.e., independently trained and used for tasks on protein sequences alone, small molecule structures alone, or clinical data alone. To overcome this limitation of biomedical FMs, we present BioBridge, a novel parameter-efficient learning framework, to bridge independently trained unimodal FMs to establish multimodal behavior. BioBridge achieves it by utilizing Knowledge Graphs (KG) to learn transformations between one unimodal FM and another without fine-tuning any underlying unimodal FMs. Our empirical results demonstrate that BioBridge can beat the best baseline KG embedding methods (on average by around 76.3%) in cross-modal retrieval tasks. We also identify BioBridge demonstrates out-of-domain generalization ability by extrapolating to unseen modalities or relations. Additionally, we also show that BioBridge presents itself as a general purpose retriever that can aid biomedical multimodal question answering as well as enhance the guided generation of novel drugs.
Abstract:How can we enhance the node features acquired from Pretrained Models (PMs) to better suit downstream graph learning tasks? Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications. For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features, without incorporating any domain adaptation techniques. Nevertheless, this practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features, leading to a decline in GNNs performance. In this work, we seek to improve the node features obtained from a PM for downstream graph tasks and introduce TOUCHUP-G, which has several advantages. It is (a) General: applicable to any downstream graph task, including link prediction which is often employed in recommender systems; (b) Multi-modal: able to improve raw features of any modality (e.g. images, texts, audio); (c) Principled: it is closely related to a novel metric, feature homophily, which we propose to quantify the potential correlations between the graph structure and node features and we show that TOUCHUP-G can effectively shrink the discrepancy between the graph structure and node features; (d) Effective: achieving state-of-the-art results on four real-world datasets spanning different tasks and modalities.
Abstract:Model pre-training on large text corpora has been demonstrated effective for various downstream applications in the NLP domain. In the graph mining domain, a similar analogy can be drawn for pre-training graph models on large graphs in the hope of benefiting downstream graph applications, which has also been explored by several recent studies. However, no existing study has ever investigated the pre-training of text plus graph models on large heterogeneous graphs with abundant textual information (a.k.a. large graph corpora) and then fine-tuning the model on different related downstream applications with different graph schemas. To address this problem, we propose a framework of graph-aware language model pre-training (GALM) on a large graph corpus, which incorporates large language models and graph neural networks, and a variety of fine-tuning methods on downstream applications. We conduct extensive experiments on Amazon's real internal datasets and large public datasets. Comprehensive empirical results and in-depth analysis demonstrate the effectiveness of our proposed methods along with lessons learned.
Abstract:Graph Neural Networks (GNNs) have demonstrated promising outcomes across various tasks, including node classification and link prediction. Despite their remarkable success in various high-impact applications, we have identified three common pitfalls in message passing for link prediction. Particularly, in prevalent GNN frameworks (e.g., DGL and PyTorch-Geometric), the target edges (i.e., the edges being predicted) consistently exist as message passing edges in the graph during training. Consequently, this results in overfitting and distribution shift, both of which adversely impact the generalizability to test the target edges. Additionally, during test time, the failure to exclude the test target edges leads to implicit test leakage caused by neighborhood aggregation. In this paper, we analyze these three pitfalls and investigate the impact of including or excluding target edges on the performance of nodes with varying degrees during training and test phases. Our theoretical and empirical analysis demonstrates that low-degree nodes are more susceptible to these pitfalls. These pitfalls can have detrimental consequences when GNNs are implemented in production systems. To systematically address these pitfalls, we propose SpotTarget, an effective and efficient GNN training framework. During training, SpotTarget leverages our insight regarding low-degree nodes and excludes train target edges connected to at least one low-degree node. During test time, it emulates real-world scenarios of GNN usage in production and excludes all test target edges. Our experiments conducted on diverse real-world datasets, demonstrate that SpotTarget significantly enhances GNNs, achieving up to a 15x increase in accuracy in sparse graphs. Furthermore, SpotTarget consistently and dramatically improves the performance for low-degree nodes in dense graphs.
Abstract:How can we learn effective node representations on textual graphs? Graph Neural Networks (GNNs) that use Language Models (LMs) to encode textual information of graphs achieve state-of-the-art performance in many node classification tasks. Yet, combining GNNs with LMs has not been widely explored for practical deployments due to its scalability issues. In this work, we tackle this challenge by developing a Graph-Aware Distillation framework (GRAD) to encode graph structures into an LM for graph-free, fast inference. Different from conventional knowledge distillation, GRAD jointly optimizes a GNN teacher and a graph-free student over the graph's nodes via a shared LM. This encourages the graph-free student to exploit graph information encoded by the GNN teacher while at the same time, enables the GNN teacher to better leverage textual information from unlabeled nodes. As a result, the teacher and the student models learn from each other to improve their overall performance. Experiments in eight node classification benchmarks in both transductive and inductive settings showcase GRAD's superiority over existing distillation approaches for textual graphs.
Abstract:Graph Neural Networks (GNNs) are currently dominating in modeling graph-structure data, while their high reliance on graph structure for inference significantly impedes them from widespread applications. By contrast, Graph-regularized MLPs (GR-MLPs) implicitly inject the graph structure information into model weights, while their performance can hardly match that of GNNs in most tasks. This motivates us to study the causes of the limited performance of GR-MLPs. In this paper, we first demonstrate that node embeddings learned from conventional GR-MLPs suffer from dimensional collapse, a phenomenon in which the largest a few eigenvalues dominate the embedding space, through empirical observations and theoretical analysis. As a result, the expressive power of the learned node representations is constrained. We further propose OrthoReg, a novel GR-MLP model to mitigate the dimensional collapse issue. Through a soft regularization loss on the correlation matrix of node embeddings, OrthoReg explicitly encourages orthogonal node representations and thus can naturally avoid dimensionally collapsed representations. Experiments on traditional transductive semi-supervised classification tasks and inductive node classification for cold-start scenarios demonstrate its effectiveness and superiority.