Abstract:Electrical impedance tomography (EIT) is a non-invasive imaging technique, which has been widely used in the fields of industrial inspection, medical monitoring and tactile sensing. However, due to the inherent non-linearity and ill-conditioned nature of the EIT inverse problem, the reconstructed image is highly sensitive to the measured data, and random noise artifacts often appear in the reconstructed image, which greatly limits the application of EIT. To address this issue, a conditional diffusion model with voltage consistency (CDMVC) is proposed in this study. The method consists of a pre-imaging module, a conditional diffusion model for reconstruction, a forward voltage constraint network and a scheme of voltage consistency constraint during sampling process. The pre-imaging module is employed to generate the initial reconstruction. This serves as a condition for training the conditional diffusion model. Finally, based on the forward voltage constraint network, a voltage consistency constraint is implemented in the sampling phase to incorporate forward information of EIT, thereby enhancing imaging quality. A more complete dataset, including both common and complex concave shapes, is generated. The proposed method is validated using both simulation and physical experiments. Experimental results demonstrate that our method can significantly improves the quality of reconstructed images. In addition, experimental results also demonstrate that our method has good robustness and generalization performance.
Abstract:The increasing demand for intelligent assistants in human-populated environments has motivated significant research in autonomous robotic systems. Traditional service robots and virtual assistants, however, struggle with real-world task execution due to their limited capacity for dynamic reasoning and interaction, particularly when human collaboration is required. Recent developments in Large Language Models have opened new avenues for improving these systems, enabling more sophisticated reasoning and natural interaction capabilities. In this paper, we introduce AssistantX, an LLM-powered proactive assistant designed to operate autonomously in a physical office environment. Unlike conventional service robots, AssistantX leverages a novel multi-agent architecture, PPDR4X, which provides advanced inference capabilities and comprehensive collaboration awareness. By effectively bridging the gap between virtual operations and physical interactions, AssistantX demonstrates robust performance in managing complex real-world scenarios. Our evaluation highlights the architecture's effectiveness, showing that AssistantX can respond to clear instructions, actively retrieve supplementary information from memory, and proactively seek collaboration from team members to ensure successful task completion. More details and videos can be found at https://assistantx-agent.github.io/AssistantX/.
Abstract:Compared with the widely investigated homogeneous multi-robot collaboration, heterogeneous robots with different capabilities can provide a more efficient and flexible collaboration for more complex tasks. In this paper, we consider a more challenging heterogeneous ad hoc teamwork collaboration problem where an ad hoc robot joins an existing heterogeneous team for a shared goal. Specifically, the ad hoc robot collaborates with unknown teammates without prior coordination, and it is expected to generate an appropriate cooperation policy to improve the efficiency of the whole team. To solve this challenging problem, we leverage the remarkable potential of the large language model (LLM) to establish a decentralized heterogeneous ad hoc teamwork collaboration framework that focuses on generating reasonable policy for an ad hoc robot to collaborate with original heterogeneous teammates. A training-free hierarchical dynamic planner is developed using the LLM together with the newly proposed Interactive Reflection of Thoughts (IRoT) method for the ad hoc agent to adapt to different teams. We also build a benchmark testing dataset to evaluate the proposed framework in the heterogeneous ad hoc multi-agent tidying-up task. Extensive comparison and ablation experiments are conducted in the benchmark to demonstrate the effectiveness of the proposed framework. We have also employed the proposed framework in physical robots in a real-world scenario. The experimental videos can be found at https://youtu.be/wHYP5T2WIp0.
Abstract:Human-robot collaboration (HRC) in a shared workspace has become a common pattern in real-world robot applications and has garnered significant research interest. However, most existing studies for human-in-the-loop (HITL) collaboration with robots in a shared workspace evaluate in either simplified game environments or physical platforms, falling short in limited realistic significance or limited scalability. To support future studies, we build an embodied framework named HumanTHOR, which enables humans to act in the simulation environment through VR devices to support HITL collaborations in a shared workspace. To validate our system, we build a benchmark of everyday tasks and conduct a preliminary user study with two baseline algorithms. The results show that the robot can effectively assist humans in collaboration, demonstrating the significance of HRC. The comparison among different levels of baselines affirms that our system can adequately evaluate robot capabilities and serve as a benchmark for different robot algorithms. The experimental results also indicate that there is still much room in the area and our system can provide a preliminary foundation for future HRC research in a shared workspace. More information about the simulation environment, experiment videos, benchmark descriptions, and additional supplementary materials can be found on the website: https://sites.google.com/view/humanthor/.
Abstract:Training an agent to adapt to specific tasks through co-optimization of morphology and control has widely attracted attention. However, whether there exists an optimal configuration and tactics for agents in a multiagent competition scenario is still an issue that is challenging to definitively conclude. In this context, we propose competitive evolution (CompetEvo), which co-evolves agents' designs and tactics in confrontation. We build arenas consisting of three animals and their evolved derivatives, placing agents with different morphologies in direct competition with each other. The results reveal that our method enables agents to evolve a more suitable design and strategy for fighting compared to fixed-morph agents, allowing them to obtain advantages in combat scenarios. Moreover, we demonstrate the amazing and impressive behaviors that emerge when confrontations are conducted under asymmetrical morphs.
Abstract:It is common for us to feel pressure in a competition environment, which arises from the desire to obtain success comparing with other individuals or opponents. Although we might get anxious under the pressure, it could also be a drive for us to stimulate our potentials to the best in order to keep up with others. Inspired by this, we propose a competitive learning framework which is able to help individual robot to acquire knowledge from the competition, fully stimulating its dynamics potential in the race. Specifically, the competition information among competitors is introduced as the additional auxiliary signal to learn advantaged actions. We further build a Multiagent-Race environment, and extensive experiments are conducted, demonstrating that robots trained in competitive environments outperform ones that are trained with SoTA algorithms in single robot environment.
Abstract:Dynamic magnetic resonance imaging (MRI) plays an indispensable role in cardiac diagnosis. To enable fast imaging, the k-space data can be undersampled but the image reconstruction poses a great challenge of high-dimensional processing. This challenge leads to necessitate extensive training data in many deep learning reconstruction methods. This work proposes a novel and efficient approach, leveraging a dimension-reduced separable learning scheme that excels even with highly limited training data. We further integrate it with spatiotemporal priors to develop a Deep Separable Spatiotemporal Learning network (DeepSSL), which unrolls an iteration process of a reconstruction model with both temporal low-rankness and spatial sparsity. Intermediate outputs are visualized to provide insights into the network's behavior and enhance its interpretability. Extensive results on cardiac cine datasets show that the proposed DeepSSL is superior to the state-of-the-art methods visually and quantitatively, while reducing the demand for training cases by up to 75%. And its preliminary adaptability to cardiac patients has been verified through experienced radiologists' and cardiologists' blind reader study. Additionally, DeepSSL also benefits for achieving the downstream task of cardiac segmentation with higher accuracy and shows robustness in prospective real-time cardiac MRI.
Abstract:Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool to analyze chemicals and proteins in bioengineering. However, NMR signals are easily contaminated by noise during the data acquisition, which can affect subsequent quantitative analysis. Therefore, denoising NMR signals has been a long-time concern. In this work, we propose an optimization model-based iterative denoising method, CHORD-V, by treating the time-domain NMR signal as damped exponentials and maintaining the exponential signal form with a Vandermonde factorization. Results on both synthetic and realistic NMR data show that CHORD-V has a superior denoising performance over typical Cadzow and rQRd methods, and the state-of-the-art CHORD method. CHORD-V restores low-intensity spectral peaks more accurately, especially when the noise is relatively high.
Abstract:Magnetic Resonance Imaging (MRI) plays an important role in medical diagnosis, generating petabytes of image data annually in large hospitals. This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure. Additionally, local data processing demands substantial manpower and hardware investments. Data isolation across different healthcare institutions hinders cross-institutional collaboration in clinics and research. In this work, we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing, 6G bandwidth, edge computing, federated learning, and blockchain technology. This system is called Cloud-MRI, aiming at solving the problems of MRI data storage security, transmission speed, AI algorithm maintenance, hardware upgrading, and collaborative work. The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data (ISMRMRD) format. Then, the data are uploaded to the cloud or edge nodes for fast image reconstruction, neural network training, and automatic analysis. Then, the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services. The Cloud-MRI system will save the raw imaging data, reduce the risk of data loss, facilitate inter-institutional medical collaboration, and finally improve diagnostic accuracy and work efficiency.
Abstract:Magnetic resonance imaging (MRI) is an important non-invasive imaging method in clinical diagnosis. Beyond the common image structures, parametric imaging can provide the intrinsic tissue property thus could be used in quantitative evaluation. The emerging deep learning approach provides fast and accurate parameter estimation but still encounters the lack of network interpretation and enough training data. Even with a large amount of training data, the mismatch between the training and target data may introduce errors. Here, we propose one way that solely relies on the target scanned data and does not need a pre-defined training database. We provide a proof-of-concept that embeds the physical rule of MRI, the Bloch equation, into the loss of physics-informed neural network (PINN). PINN enables learning the Bloch equation, estimating the T2 parameter, and generating a series of physically synthetic data. Experimental results are conducted on phantom and cardiac imaging to demonstrate its potential in quantitative MRI.