Talking head generation is the process of generating videos of a person speaking based on an audio recording of their voice.
Researchers have shown a growing interest in Audio-driven Talking Head Generation. The primary challenge in talking head generation is achieving audio-visual coherence between the lips and the audio, known as lip synchronization. This paper proposes a generic method, LPIPS-AttnWav2Lip, for reconstructing face images of any speaker based on audio. We used the U-Net architecture based on residual CBAM to better encode and fuse audio and visual modal information. Additionally, the semantic alignment module extends the receptive field of the generator network to obtain the spatial and channel information of the visual features efficiently; and match statistical information of visual features with audio latent vector to achieve the adjustment and injection of the audio content information to the visual information. To achieve exact lip synchronization and to generate realistic high-quality images, our approach adopts LPIPS Loss, which simulates human judgment of image quality and reduces instability possibility during the training process. The proposed method achieves outstanding performance in terms of lip synchronization accuracy and visual quality as demonstrated by subjective and objective evaluation results. The code for the paper is available at the following link: https://github.com/FelixChan9527/LPIPS-AttnWav2Lip
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
Talking Head Generation aims at synthesizing natural-looking talking videos from speech and a single portrait image. Previous 3D talking head generation methods have relied on domain-specific heuristics such as warping-based facial motion representation priors to animate talking motions, yet still produce inaccurate 3D avatar reconstructions, thus undermining the realism of generated animations. We introduce Splat-Portrait, a Gaussian-splatting-based method that addresses the challenges of 3D head reconstruction and lip motion synthesis. Our approach automatically learns to disentangle a single portrait image into a static 3D reconstruction represented as static Gaussian Splatting, and a predicted whole-image 2D background. It then generates natural lip motion conditioned on input audio, without any motion driven priors. Training is driven purely by 2D reconstruction and score-distillation losses, without 3D supervision nor landmarks. Experimental results demonstrate that Splat-Portrait exhibits superior performance on talking head generation and novel view synthesis, achieving better visual quality compared to previous works. Our project code and supplementary documents are public available at https://github.com/stonewalking/Splat-portrait.
Speech-Preserving Facial Expression Manipulation (SPFEM) is an innovative technique aimed at altering facial expressions in images and videos while retaining the original mouth movements. Despite advancements, SPFEM still struggles with accurate lip synchronization due to the complex interplay between facial expressions and mouth shapes. Capitalizing on the advanced capabilities of audio-driven talking head generation (AD-THG) models in synthesizing precise lip movements, our research introduces a novel integration of these models with SPFEM. We present a new framework, Talking Head Facial Expression Manipulation (THFEM), which utilizes AD-THG models to generate frames with accurately synchronized lip movements from audio inputs and SPFEM-altered images. However, increasing the number of frames generated by AD-THG models tends to compromise the realism and expression fidelity of the images. To counter this, we develop an adjacent frame learning strategy that finetunes AD-THG models to predict sequences of consecutive frames. This strategy enables the models to incorporate information from neighboring frames, significantly improving image quality during testing. Our extensive experimental evaluations demonstrate that this framework effectively preserves mouth shapes during expression manipulations, highlighting the substantial benefits of integrating AD-THG with SPFEM.
Talking head generation is increasingly important in virtual reality (VR), especially for social scenarios involving multi-turn conversation. Existing approaches face notable limitations: mesh-based 3D methods can model dual-person dialogue but lack realistic textures, while large-model-based 2D methods produce natural appearances but incur prohibitive computational costs. Recently, 3D Gaussian Splatting (3DGS) based methods achieve efficient and realistic rendering but remain speaker-only and ignore social relationships. We introduce RSATalker, the first framework that leverages 3DGS for realistic and socially-aware talking head generation with support for multi-turn conversation. Our method first drives mesh-based 3D facial motion from speech, then binds 3D Gaussians to mesh facets to render high-fidelity 2D avatar videos. To capture interpersonal dynamics, we propose a socially-aware module that encodes social relationships, including blood and non-blood as well as equal and unequal, into high-level embeddings through a learnable query mechanism. We design a three-stage training paradigm and construct the RSATalker dataset with speech-mesh-image triplets annotated with social relationships. Extensive experiments demonstrate that RSATalker achieves state-of-the-art performance in both realism and social awareness. The code and dataset will be released.
Building 3D animatable head avatars from a single image is an important yet challenging problem. Existing methods generally collapse under large camera pose variations, compromising the realism of 3D avatars. In this work, we propose a new framework to tackle the novel setting of one-shot 3D full-head animatable avatar reconstruction in a single feed-forward pass, enabling real-time animation and simultaneous 360$^\circ$ rendering views. To facilitate efficient animation control, we model 3D head avatars with Gaussian primitives embedded on the surface of a parametric face model within the UV space. To obtain knowledge of full-head geometry and textures, we leverage rich 3D full-head priors within a pretrained 3D generative adversarial network (GAN) for global full-head feature extraction and multi-view supervision. To increase the fidelity of the 3D reconstruction of the input image, we take advantage of the symmetric nature of the UV space and human faces to fuse local fine-grained input image features with the global full-head textures. Extensive experiments demonstrate the effectiveness of our method, achieving high-quality 3D full-head modeling as well as real-time animation, thereby improving the realism of 3D talking avatars.
Face video anonymization is aimed at privacy preservation while allowing for the analysis of videos in a number of computer vision downstream tasks such as expression recognition, people tracking, and action recognition. We propose here a novel unified framework referred to as Anon-NET, streamlined to de-identify facial videos, while preserving age, gender, race, pose, and expression of the original video. Specifically, we inpaint faces by a diffusion-based generative model guided by high-level attribute recognition and motion-aware expression transfer. We then animate deidentified faces by video-driven animation, which accepts the de-identified face and the original video as input. Extensive experiments on the datasets VoxCeleb2, CelebV-HQ, and HDTF, which include diverse facial dynamics, demonstrate the effectiveness of AnonNET in obfuscating identity while retaining visual realism and temporal consistency. The code of AnonNet will be publicly released.
Current audio-driven 3D head generation methods mainly focus on single-speaker scenarios, lacking natural, bidirectional listen-and-speak interaction. Achieving seamless conversational behavior, where speaking and listening states transition fluidly remains a key challenge. Existing 3D conversational avatar approaches rely on error-prone pseudo-3D labels that fail to capture fine-grained facial dynamics. To address these limitations, we introduce a novel two-stage framework MANGO, which leveraging pure image-level supervision by alternately training to mitigate the noise introduced by pseudo-3D labels, thereby achieving better alignment with real-world conversational behaviors. Specifically, in the first stage, a diffusion-based transformer with a dual-audio interaction module models natural 3D motion from multi-speaker audio. In the second stage, we use a fast 3D Gaussian Renderer to generate high-fidelity images and provide 2D-level photometric supervision for the 3D motions through alternate training. Additionally, we introduce MANGO-Dialog, a high-quality dataset with over 50 hours of aligned 2D-3D conversational data across 500+ identities. Extensive experiments demonstrate that our method achieves exceptional accuracy and realism in modeling two-person 3D dialogue motion, significantly advancing the fidelity and controllability of audio-driven talking heads.
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
Generating realistic, dyadic talking head video requires ultra-low latency. Existing chunk-based methods require full non-causal context windows, introducing significant delays. This high latency critically prevents the immediate, non-verbal feedback required for a realistic listener. To address this, we present DyStream, a flow matching-based autoregressive model that could generate video in real-time from both speaker and listener audio. Our method contains two key designs: (1) we adopt a stream-friendly autoregressive framework with flow-matching heads for probabilistic modeling, and (2) We propose a causal encoder enhanced by a lookahead module to incorporate short future context (e.g., 60 ms) to improve quality while maintaining low latency. Our analysis shows this simple-and-effective method significantly surpass alternative causal strategies, including distillation and generative encoder. Extensive experiments show that DyStream could generate video within 34 ms per frame, guaranteeing the entire system latency remains under 100 ms. Besides, it achieves state-of-the-art lip-sync quality, with offline and online LipSync Confidence scores of 8.13 and 7.61 on HDTF, respectively. The model, weights and codes are available.