Abstract:We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
Abstract:Deep learning based methods for medical images can be easily compromised by adversarial examples (AEs), posing a great security flaw in clinical decision-making. It has been discovered that conventional adversarial attacks like PGD which optimize the classification logits, are easy to distinguish in the feature space, resulting in accurate reactive defenses. To better understand this phenomenon and reassess the reliability of the reactive defenses for medical AEs, we thoroughly investigate the characteristic of conventional medical AEs. Specifically, we first theoretically prove that conventional adversarial attacks change the outputs by continuously optimizing vulnerable features in a fixed direction, thereby leading to outlier representations in the feature space. Then, a stress test is conducted to reveal the vulnerability of medical images, by comparing with natural images. Interestingly, this vulnerability is a double-edged sword, which can be exploited to hide AEs. We then propose a simple-yet-effective hierarchical feature constraint (HFC), a novel add-on to conventional white-box attacks, which assists to hide the adversarial feature in the target feature distribution. The proposed method is evaluated on three medical datasets, both 2D and 3D, with different modalities. The experimental results demonstrate the superiority of HFC, \emph{i.e.,} it bypasses an array of state-of-the-art adversarial medical AE detectors more efficiently than competing adaptive attacks, which reveals the deficiencies of medical reactive defense and allows to develop more robust defenses in future.
Abstract:Recent studies on transfer learning have shown that selectively fine-tuning a subset of layers or customizing different learning rates for each layer can greatly improve robustness to out-of-distribution (OOD) data and retain generalization capability in the pre-trained models. However, most of these methods employ manually crafted heuristics or expensive hyper-parameter searches, which prevent them from scaling up to large datasets and neural networks. To solve this problem, we propose Trainable Projected Gradient Method (TPGM) to automatically learn the constraint imposed for each layer for a fine-grained fine-tuning regularization. This is motivated by formulating fine-tuning as a bi-level constrained optimization problem. Specifically, TPGM maintains a set of projection radii, i.e., distance constraints between the fine-tuned model and the pre-trained model, for each layer, and enforces them through weight projections. To learn the constraints, we propose a bi-level optimization to automatically learn the best set of projection radii in an end-to-end manner. Theoretically, we show that the bi-level optimization formulation could explain the regularization capability of TPGM. Empirically, with little hyper-parameter search cost, TPGM outperforms existing fine-tuning methods in OOD performance while matching the best in-distribution (ID) performance. For example, when fine-tuned on DomainNet-Real and ImageNet, compared to vanilla fine-tuning, TPGM shows $22\%$ and $10\%$ relative OOD improvement respectively on their sketch counterparts. Code is available at \url{https://github.com/PotatoTian/TPGM}.
Abstract:Deep neural network based medical image systems are vulnerable to adversarial examples. Many defense mechanisms have been proposed in the literature, however, the existing defenses assume a passive attacker who knows little about the defense system and does not change the attack strategy according to the defense. Recent works have shown that a strong adaptive attack, where an attacker is assumed to have full knowledge about the defense system, can easily bypass the existing defenses. In this paper, we propose a novel adversarial example defense system called Medical Aegis. To the best of our knowledge, Medical Aegis is the first defense in the literature that successfully addresses the strong adaptive adversarial example attacks to medical images. Medical Aegis boasts two-tier protectors: The first tier of Cushion weakens the adversarial manipulation capability of an attack by removing its high-frequency components, yet posing a minimal effect on classification performance of the original image; the second tier of Shield learns a set of per-class DNN models to predict the logits of the protected model. Deviation from the Shield's prediction indicates adversarial examples. Shield is inspired by the observations in our stress tests that there exist robust trails in the shallow layers of a DNN model, which the adaptive attacks can hardly destruct. Experimental results show that the proposed defense accurately detects adaptive attacks, with negligible overhead for model inference.
Abstract:In cloud computing, it is desirable if suspicious activities can be detected by automatic anomaly detection systems. Although anomaly detection has been investigated in the past, it remains unsolved in cloud computing. Challenges are: characterizing the normal behavior of a cloud server, distinguishing between benign and malicious anomalies (attacks), and preventing alert fatigue due to false alarms. We propose CloudShield, a practical and generalizable real-time anomaly and attack detection system for cloud computing. Cloudshield uses a general, pretrained deep learning model with different cloud workloads, to predict the normal behavior and provide real-time and continuous detection by examining the model reconstruction error distributions. Once an anomaly is detected, to reduce alert fatigue, CloudShield automatically distinguishes between benign programs, known attacks, and zero-day attacks, by examining the prediction error distributions. We evaluate the proposed CloudShield on representative cloud benchmarks. Our evaluation shows that CloudShield, using model pretraining, can apply to a wide scope of cloud workloads. Especially, we observe that CloudShield can detect the recently proposed speculative execution attacks, e.g., Spectre and Meltdown attacks, in milliseconds. Furthermore, we show that CloudShield accurately differentiates and prioritizes known attacks, and potential zero-day attacks, from benign programs. Thus, it significantly reduces false alarms by up to 99.0%.
Abstract:Impostors are attackers who take over a smartphone and gain access to the legitimate user's confidential and private information. This paper proposes a defense-in-depth mechanism to detect impostors quickly with simple Deep Learning algorithms, which can achieve better detection accuracy than the best prior work which used Machine Learning algorithms requiring computation of multiple features. Different from previous work, we then consider protecting the privacy of a user's behavioral (sensor) data by not exposing it outside the smartphone. For this scenario, we propose a Recurrent Neural Network (RNN) based Deep Learning algorithm that uses only the legitimate user's sensor data to learn his/her normal behavior. We propose to use Prediction Error Distribution (PED) to enhance the detection accuracy. We also show how a minimalist hardware module, dubbed SID for Smartphone Impostor Detector, can be designed and integrated into smartphones for self-contained impostor detection. Experimental results show that SID can support real-time impostor detection, at a very low hardware cost and energy consumption, compared to other RNN accelerators.
Abstract:As mobile devices are becoming ubiquitous, regularly interacting with a variety of user interfaces (UIs) is a common aspect of daily life for many people. To improve the accessibility of these devices and to enable their usage in a variety of settings, building models that can assist users and accomplish tasks through the UI is vitally important. However, there are several challenges to achieve this. First, UI components of similar appearance can have different functionalities, making understanding their function more important than just analyzing their appearance. Second, domain-specific features like Document Object Model (DOM) in web pages and View Hierarchy (VH) in mobile applications provide important signals about the semantics of UI elements, but these features are not in a natural language format. Third, owing to a large diversity in UIs and absence of standard DOM or VH representations, building a UI understanding model with high coverage requires large amounts of training data. Inspired by the success of pre-training based approaches in NLP for tackling a variety of problems in a data-efficient way, we introduce a new pre-trained UI representation model called ActionBert. Our methodology is designed to leverage visual, linguistic and domain-specific features in user interaction traces to pre-train generic feature representations of UIs and their components. Our key intuition is that user actions, e.g., a sequence of clicks on different UI components, reveals important information about their functionality. We evaluate the proposed model on a wide variety of downstream tasks, ranging from icon classification to UI component retrieval based on its natural language description. Experiments show that the proposed ActionBert model outperforms multi-modal baselines across all downstream tasks by up to 15.5%.
Abstract:Deep neural networks (DNNs) for medical images are extremely vulnerable to adversarial examples (AEs), which poses security concerns on clinical decision making. Luckily, medical AEs are also easy to detect in hierarchical feature space per our study herein. To better understand this phenomenon, we thoroughly investigate the intrinsic characteristic of medical AEs in feature space, providing both empirical evidence and theoretical explanations for the question: why are medical adversarial attacks easy to detect? We first perform a stress test to reveal the vulnerability of deep representations of medical images, in contrast to natural images. We then theoretically prove that typical adversarial attacks to binary disease diagnosis network manipulate the prediction by continuously optimizing the vulnerable representations in a fixed direction, resulting in outlier features that make medical AEs easy to detect. However, this vulnerability can also be exploited to hide the AEs in the feature space. We propose a novel hierarchical feature constraint (HFC) as an add-on to existing adversarial attacks, which encourages the hiding of the adversarial representation within the normal feature distribution. We evaluate the proposed method on two public medical image datasets, namely {Fundoscopy} and {Chest X-Ray}. Experimental results demonstrate the superiority of our adversarial attack method as it bypasses an array of state-of-the-art adversarial detectors more easily than competing attack methods, supporting that the great vulnerability of medical features allows an attacker more room to manipulate the adversarial representations.
Abstract:Recent methods in multiple landmark detection based on deep convolutional neural networks (CNNs) reach high accuracy and improve traditional clinical workflow. However, the vulnerability of CNNs to adversarial-example attacks can be easily exploited to break classification and segmentation tasks. This paper is the first to study how fragile a CNN-based model on multiple landmark detection to adversarial perturbations. Specifically, we propose a novel Adaptive Targeted Iterative FGSM (ATI-FGSM) attack against the state-of-the-art models in multiple landmark detection. The attacker can use ATI-FGSM to precisely control the model predictions of arbitrarily selected landmarks, while keeping other stationary landmarks still, by adding imperceptible perturbations to the original image. A comprehensive evaluation on a public dataset for cephalometric landmark detection demonstrates that the adversarial examples generated by ATI-FGSM break the CNN-based network more effectively and efficiently, compared with the original Iterative FGSM attack. Our work reveals serious threats to patients' health. Furthermore, we discuss the limitations of our method and provide potential defense directions, by investigating the coupling effect of nearby landmarks, i.e., a major source of divergence in our experiments. Our source code is available at https://github.com/qsyao/attack_landmark_detection.
Abstract:Attacks against the control processor of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the attacks can prevent further damage. However, detecting zero-day attacks can be challenging because they have no known code and have unknown behavior. In order to address the zero-day attack problem, we propose a data-driven defense by training a temporal deep learning model, using only normal data from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we can quickly find malicious codes running on the processor, by estimating deviations from the normal behavior with a statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with over 99.9% accuracy and nearly zero false positives.