Topic:Table To Text Generation
What is Table To Text Generation? Table-to-text generation is the process of generating natural language descriptions from structured data tables, typically using pretrained language models.
Papers and Code
Apr 20, 2025
Abstract:Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
Via

Apr 13, 2025
Abstract:With the rapid advancement of large language models (LLMs), Retrieval-Augmented Generation (RAG) effectively combines LLMs generative capabilities with external retrieval-based information. The Hybrid Document RAG task aims to integrate textual and hierarchical tabular data for more comprehensive retrieval and generation in complex scenarios. However, there is no existing dataset specifically designed for this task that includes both text and tabular data. Additionally, existing methods struggle to retrieve relevant tabular data and integrate it with text. Semantic similarity-based retrieval lacks accuracy, while table-specific methods fail to handle complex hierarchical structures effectively. Furthermore, the QA task requires complex reasoning and calculations, further complicating the challenge. In this paper, we propose a new large-scale dataset, DocRAGLib, specifically designed for the question answering (QA) task scenario under Hybrid Document RAG. To tackle these challenges, we introduce HD-RAG, a novel framework that incorporates a row-and-column level (RCL) table representation, employs a two-stage process combining ensemble and LLM-based retrieval, and integrates RECAP, which is designed for multi-step reasoning and complex calculations in Document-QA tasks. We conduct comprehensive experiments with DocRAGLib, showing that HD-RAG outperforms existing baselines in both retrieval accuracy and QA performance, demonstrating its effectiveness.
* 10 pages, 4 figures
Via

Apr 14, 2025
Abstract:Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
Via

Apr 14, 2025
Abstract:Large Language Models (LLMs) are transforming data analytics, but their widespread adoption is hindered by two critical limitations: they are not explainable (opaque reasoning processes) and not verifiable (prone to hallucinations and unchecked errors). While retrieval-augmented generation (RAG) improves accuracy by grounding LLMs in external data, it fails to address the core challenges of trustworthy analytics - especially when processing noisy, inconsistent, or multi-modal data (for example, text, tables, images). We propose DataMosaic, a framework designed to make LLM-powered analytics both explainable and verifiable. By dynamically extracting task-specific structures (for example, tables, graphs, trees) from raw data, DataMosaic provides transparent, step-by-step reasoning traces and enables validation of intermediate results. Built on a multi-agent framework, DataMosaic orchestrates self-adaptive agents that align with downstream task requirements, enhancing consistency, completeness, and privacy. Through this approach, DataMosaic not only tackles the limitations of current LLM-powered analytics systems but also lays the groundwork for a new paradigm of grounded, accurate, and explainable multi-modal data analytics.
Via

Apr 14, 2025
Abstract:We aim to develop a retrieval-augmented generation (RAG) framework that answers questions over a corpus of visually-rich documents presented in mixed modalities (e.g., charts, tables) and diverse formats (e.g., PDF, PPTX). In this paper, we introduce a new RAG framework, VDocRAG, which can directly understand varied documents and modalities in a unified image format to prevent missing information that occurs by parsing documents to obtain text. To improve the performance, we propose novel self-supervised pre-training tasks that adapt large vision-language models for retrieval by compressing visual information into dense token representations while aligning them with textual content in documents. Furthermore, we introduce OpenDocVQA, the first unified collection of open-domain document visual question answering datasets, encompassing diverse document types and formats. OpenDocVQA provides a comprehensive resource for training and evaluating retrieval and question answering models on visually-rich documents in an open-domain setting. Experiments show that VDocRAG substantially outperforms conventional text-based RAG and has strong generalization capability, highlighting the potential of an effective RAG paradigm for real-world documents.
* Accepted by CVPR 2025; project page: https://vdocrag.github.io
Via

Apr 12, 2025
Abstract:Finding relevant tables among databases, lakes, and repositories is the first step in extracting value from data. Such a task remains difficult because assessing whether a table is relevant to a problem does not always depend only on its content but also on the context, which is usually tribal knowledge known to the individual or team. While tools like data catalogs and academic data discovery systems target this problem, they rely on keyword search or more complex interfaces, limiting non-technical users' ability to find relevant data. The advent of large language models (LLMs) offers a unique opportunity for users to ask questions directly in natural language, making dataset discovery more intuitive, accessible, and efficient. In this paper, we introduce Pneuma, a retrieval-augmented generation (RAG) system designed to efficiently and effectively discover tabular data. Pneuma leverages large language models (LLMs) for both table representation and table retrieval. For table representation, Pneuma preserves schema and row-level information to ensure comprehensive data understanding. For table retrieval, Pneuma augments LLMs with traditional information retrieval techniques, such as full-text and vector search, harnessing the strengths of both to improve retrieval performance. To evaluate Pneuma, we generate comprehensive benchmarks that simulate table discovery workload on six real-world datasets including enterprise data, scientific databases, warehousing data, and open data. Our results demonstrate that Pneuma outperforms widely used table search systems (such as full-text search and state-of-the-art RAG systems) in accuracy and resource efficiency.
* SIGMOD 2025 Paper
Via

Apr 10, 2025
Abstract:Retrieval test collections are essential for evaluating information retrieval systems, yet they often lack generalizability across tasks. To overcome this limitation, we introduce REANIMATOR, a versatile framework designed to enable the repurposing of existing test collections by enriching them with extracted and synthetic resources. REANIMATOR enhances test collections from PDF files by parsing full texts and machine-readable tables, as well as related contextual information. It then employs state-of-the-art large language models to produce synthetic relevance labels. Including an optional human-in-the-loop step can help validate the resources that have been extracted and generated. We demonstrate its potential with a revitalized version of the TREC-COVID test collection, showcasing the development of a retrieval-augmented generation system and evaluating the impact of tables on retrieval-augmented generation. REANIMATOR enables the reuse of test collections for new applications, lowering costs and broadening the utility of legacy resources.
Via

Apr 09, 2025
Abstract:We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
Via

Apr 10, 2025
Abstract:The growing power of generative models raises major concerns about the authenticity of published content. To address this problem, several synthetic content detection methods have been proposed for uniformly structured media such as image or text. However, little work has been done on the detection of synthetic tabular data, despite its importance in industry and government. This form of data is complex to handle due to the diversity of its structures: the number and types of the columns may vary wildly from one table to another. We tackle the tough problem of detecting synthetic tabular data ''in the wild'', i.e. when the model is deployed on table structures it has never seen before. We introduce a novel datum-wise transformer architecture and show that it outperforms existing models. Furthermore, we investigate the application of domain adaptation techniques to enhance the effectiveness of our model, thereby providing a more robust data-forgery detection solution.
Via

Apr 10, 2025
Abstract:Large Language Models (LLMs) are emerging as promising tools for automated reinforcement learning (RL) reward design, owing to their robust capabilities in commonsense reasoning and code generation. By engaging in dialogues with RL agents, LLMs construct a Reward Observation Space (ROS) by selecting relevant environment states and defining their internal operations. However, existing frameworks have not effectively leveraged historical exploration data or manual task descriptions to iteratively evolve this space. In this paper, we propose a novel heuristic framework that enhances LLM-driven reward design by evolving the ROS through a table-based exploration caching mechanism and a text-code reconciliation strategy. Our framework introduces a state execution table, which tracks the historical usage and success rates of environment states, overcoming the Markovian constraint typically found in LLM dialogues and facilitating more effective exploration. Furthermore, we reconcile user-provided task descriptions with expert-defined success criteria using structured prompts, ensuring alignment in reward design objectives. Comprehensive evaluations on benchmark RL tasks demonstrate the effectiveness and stability of the proposed framework. Code and video demos are available at jingjjjjjie.github.io/LLM2Reward.
* 7 pages, 5 figures
Via
