Table To Text Generation


Table-to-text generation is the process of generating natural language descriptions from structured data tables, typically using pretrained language models.

FinSage: A Multi-aspect RAG System for Financial Filings Question Answering

Add code
Apr 20, 2025
Viaarxiv icon

HD-RAG: Retrieval-Augmented Generation for Hybrid Documents Containing Text and Hierarchical Tables

Add code
Apr 13, 2025
Viaarxiv icon

Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol

Add code
Apr 14, 2025
Viaarxiv icon

DataMosaic: Explainable and Verifiable Multi-Modal Data Analytics through Extract-Reason-Verify

Add code
Apr 14, 2025
Viaarxiv icon

VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents

Add code
Apr 14, 2025
Viaarxiv icon

Pneuma: Leveraging LLMs for Tabular Data Representation and Retrieval in an End-to-End System

Add code
Apr 12, 2025
Viaarxiv icon

REANIMATOR: Reanimate Retrieval Test Collections with Extracted and Synthetic Resources

Add code
Apr 10, 2025
Viaarxiv icon

OmniCaptioner: One Captioner to Rule Them All

Add code
Apr 09, 2025
Viaarxiv icon

Datum-wise Transformer for Synthetic Tabular Data Detection in the Wild

Add code
Apr 10, 2025
Viaarxiv icon

Boosting Universal LLM Reward Design through the Heuristic Reward Observation Space Evolution

Add code
Apr 10, 2025
Viaarxiv icon