Table-to-text generation is the process of generating natural language descriptions from structured data tables, typically using pretrained language models.
Retrieval-augmented generation is a practical paradigm for question answering over long documents, but it remains brittle for multimodal reading where text, tables, and figures are interleaved across many pages. First, flat chunking breaks document-native structure and cross-modal alignment, yielding semantic fragments that are hard to interpret in isolation. Second, even iterative retrieval can fail in long contexts by looping on partial evidence or drifting into irrelevant sections as noise accumulates, since each step is guided only by the current snippet without a persistent global search state. We introduce $G^2$-Reader, a dual-graph system, to address both issues. It evolves a Content Graph to preserve document-native structure and cross-modal semantics, and maintains a Planning Graph, an agentic directed acyclic graph of sub-questions, to track intermediate findings and guide stepwise navigation for evidence completion. On VisDoMBench across five multimodal domains, $G^2$-Reader with Qwen3-VL-32B-Instruct reaches 66.21\% average accuracy, outperforming strong baselines and a standalone GPT-5 (53.08\%).
This paper presents Youtu-Parsing, an efficient and versatile document parsing model designed for high-performance content extraction. The architecture employs a native Vision Transformer (ViT) featuring a dynamic-resolution visual encoder to extract shared document features, coupled with a prompt-guided Youtu-LLM-2B language model for layout analysis and region-prompted decoding. Leveraging this decoupled and feature-reusable framework, we introduce a high-parallelism decoding strategy comprising two core components: token parallelism and query parallelism. The token parallelism strategy concurrently generates up to 64 candidate tokens per inference step, which are subsequently validated through a verification mechanism. This approach yields a 5--11x speedup over traditional autoregressive decoding and is particularly well-suited for highly structured scenarios, such as table recognition. To further exploit the advantages of region-prompted decoding, the query parallelism strategy enables simultaneous content prediction for multiple bounding boxes (up to five), providing an additional 2x acceleration while maintaining output quality equivalent to standard decoding. Youtu-Parsing encompasses a diverse range of document elements, including text, formulas, tables, charts, seals, and hierarchical structures. Furthermore, the model exhibits strong robustness when handling rare characters, multilingual text, and handwritten content. Extensive evaluations demonstrate that Youtu-Parsing achieves state-of-the-art (SOTA) performance on both the OmniDocBench and olmOCR-bench benchmarks. Overall, Youtu-Parsing demonstrates significant experimental value and practical utility for large-scale document intelligence applications.
General-purpose embedding models have demonstrated strong performance in text retrieval but remain suboptimal for table retrieval, where highly structured content leads to semantic compression and query-table mismatch. Recent LLM-based retrieval augmentation methods mitigate this issue by generating synthetic queries, yet they often rely on heuristic partial-table selection and seldom leverage these synthetic queries as supervision to improve the embedding model. We introduce CGPT, a training framework that enhances table retrieval through LLM-generated supervision. CGPT constructs semantically diverse partial tables by clustering table instances using K-means and sampling across clusters to broaden semantic coverage. An LLM then generates synthetic queries for these partial tables, which are used in hard-negative contrastive fine-tuning to refine the embedding model. Experiments across four public benchmarks (MimoTable, OTTQA, FetaQA, and E2E-WTQ) show that CGPT consistently outperforms retrieval baselines, including QGpT, with an average R@1 improvement of 16.54 percent. In a unified multi-domain corpus setting, CGPT further demonstrates strong cross-domain generalization and remains effective even when using smaller LLMs for synthetic query generation. These results indicate that semantically guided partial-table construction, combined with contrastive training from LLM-generated supervision, provides an effective and scalable paradigm for large-scale table retrieval. Our code is available at https://github.com/yumeow0122/CGPT.
Executable SQL generation is typically studied in text-to-SQL settings, where tables are provided as fully linearized textual schemas and contents. While effective, this formulation assumes access to structured text and incurs substantial token overhead, which is misaligned with many real-world scenarios where tables appear as visual artifacts in documents or webpages. We investigate whether compact optical representations can serve as an efficient interface for executable semantic parsing. We present OptiSQL, a vision-driven framework that generates executable SQL directly from table images and natural language questions using compact optical tokens. OptiSQL leverages an OCR-oriented visual encoder to compress table structure and content into a small set of optical tokens and fine-tunes a pretrained decoder for SQL generation while freezing the encoder to isolate representation sufficiency. Experiments on a visualized version of Spider 2.0-Snow show that OptiSQL retains strong execution accuracy while reducing table input tokens by an order of magnitude. Robustness analyses further demonstrate that optical tokens preserve essential structural information under visual perturbations.
Table retrieval is the task of retrieving the most relevant tables from large-scale corpora given natural language queries. However, structural and semantic discrepancies between unstructured text and structured tables make embedding alignment particularly challenging. Recent methods such as QGpT attempt to enrich table semantics by generating synthetic queries, yet they still rely on coarse partial-table sampling and simple fusion strategies, which limit semantic diversity and hinder effective query-table alignment. We propose STAR (Semantic Table Representation), a lightweight framework that improves semantic table representation through semantic clustering and weighted fusion. STAR first applies header-aware K-means clustering to group semantically similar rows and selects representative centroid instances to construct a diverse partial table. It then generates cluster-specific synthetic queries to comprehensively cover the table's semantic space. Finally, STAR employs weighted fusion strategies to integrate table and query embeddings, enabling fine-grained semantic alignment. This design enables STAR to capture complementary information from structured and textual sources, improving the expressiveness of table representations. Experiments on five benchmarks show that STAR achieves consistently higher Recall than QGpT on all datasets, demonstrating the effectiveness of semantic clustering and adaptive weighted fusion for robust table representation. Our code is available at https://github.com/adsl135789/STAR.
The increasing use of generative artificial intelligence (GenAI) in qualitative research raises important questions about analytic practice and interpretive authority. This study examines how researchers interact with an Inductive Thematic Analysis GPT (ITA-GPT), a purpose-built AI tool designed to support inductive thematic analysis through structured, semi-automated prompts aligned with reflexive thematic analysis and verbatim coding principles. Guided by a Human-Artificial Intelligence Collaborative Inductive Thematic Analysis (HACITA) framework, the study focuses on analytic process rather than substantive findings. Three experienced qualitative researchers conducted ITA-GPT assisted analyses of interview transcripts from education research in the Ghanaian teacher education context. The tool supported familiarization, verbatim in vivo coding, gerund-based descriptive coding, and theme development, while enforcing trace to text integrity, coverage checks, and auditability. Data sources included interaction logs, AI-generated tables, researcher revisions, deletions, insertions, comments, and reflexive memos. Findings show that ITA-GPT functioned as a procedural scaffold that structured analytic workflow and enhanced transparency. However, interpretive authority remained with human researchers, who exercised judgment through recurrent analytic actions including modification, deletion, rejection, insertion, and commenting. The study demonstrates how inductive thematic analysis is enacted through responsible human AI collaboration.
Scientific surveys require not only summarizing large bodies of literature, but also organizing them into clear and coherent conceptual structures. Existing automatic survey generation methods typically focus on linear text generation and struggle to explicitly model hierarchical relations among research topics and structured methodological comparisons, resulting in gaps in structural organization compared to expert-written surveys. We propose MVSS, a multi-view structured survey generation framework that jointly generates and aligns citation-grounded hierarchical trees, structured comparison tables, and survey text. MVSS follows a structure-first paradigm: it first constructs a conceptual tree of the research domain, then generates comparison tables constrained by the tree, and finally uses both as structural constraints for text generation. This enables complementary multi-view representations across structure, comparison, and narrative. We introduce an evaluation framework assessing structural quality, comparative completeness, and citation fidelity. Experiments on 76 computer science topics show MVSS outperforms existing methods in organization and evidence grounding, achieving performance comparable to expert surveys.
In enterprise datasets, documents are rarely pure. They are not just text, nor just numbers; they are a complex amalgam of narrative and structure. Current Retrieval-Augmented Generation (RAG) systems have attempted to address this complexity with a blunt tool: linearization. We convert rich, multidimensional tables into simple Markdown-style text strings, hoping that an embedding model will capture the geometry of a spreadsheet in a single vector. But it has already been shown that this is mathematically insufficient. This work presents Topo-RAG, a framework that challenges the assumption that "everything is text". We propose a dual architecture that respects the topology of the data: we route fluid narrative through traditional dense retrievers, while tabular structures are processed by a Cell-Aware Late Interaction mechanism, preserving their spatial relationships. Evaluated on SEC-25, a synthetic enterprise corpus that mimics real-world complexity, Topo-RAG demonstrates an 18.4% improvement in nDCG@10 on hybrid queries compared to standard linearization approaches. It's not just about searching better; it's about understanding the shape of information.
Realistic text-to-SQL workflows often require joining multiple tables. As a result, accurately retrieving the relevant set of tables becomes a key bottleneck for end-to-end performance. We study an open-book setting where queries must be answered over large, heterogeneous table collections pooled from many sources, without clean scoping signals such as database identifiers. Here, dense retrieval (DR) achieves high recall but returns many distractors, while join-aware alternatives often rely on extra assumptions and/or incur high inference overhead. We propose CORE-T, a scalable, training-free framework that enriches tables with LLM-generated purpose metadata and pre-computes a lightweight table-compatibility cache. At inference time, DR returns top-K candidates; a single LLM call selects a coherent, joinable subset, and a simple additive adjustment step restores strongly compatible tables. Across Bird, Spider, and MMQA, CORE-T improves table-selection F1 by up to 22.7 points while retrieving up to 42% fewer tables, improving multi-table execution accuracy by up to 5.0 points on Bird and 6.9 points on MMQA, and using 4-5x fewer tokens than LLM-intensive baselines.
Evaluating whether text-to-image models follow explicit spatial instructions is difficult to automate. Object detectors may miss targets or return multiple plausible detections, and simple geometric tests can become ambiguous in borderline cases. Spatial evaluation is naturally a selective prediction problem, the checker may abstain when evidence is weak and report confidence so that results can be interpreted as a risk coverage tradeoff rather than a single score. We introduce SpatialBench-UC, a small, reproducible benchmark for pairwise spatial relations. The benchmark contains 200 prompts (50 object pairs times 4 relations) grouped into 100 counterfactual pairs obtained by swapping object roles. We release a benchmark package, versioned prompts, pinned configs, per-sample checker outputs, and report tables, enabling reproducible and auditable comparisons across models. We also include a lightweight human audit used to calibrate the checker's abstention margin and confidence threshold. We evaluate three baselines, Stable Diffusion 1.5, SD 1.5 BoxDiff, and SD 1.4 GLIGEN. The checker reports pass rate and coverage as well as conditional pass rates on decided samples. The results show that grounding methods substantially improve both pass rate and coverage, while abstention remains a dominant factor due mainly to missing detections.