Abstract:Large Language Models (LLMs) are transforming data analytics, but their widespread adoption is hindered by two critical limitations: they are not explainable (opaque reasoning processes) and not verifiable (prone to hallucinations and unchecked errors). While retrieval-augmented generation (RAG) improves accuracy by grounding LLMs in external data, it fails to address the core challenges of trustworthy analytics - especially when processing noisy, inconsistent, or multi-modal data (for example, text, tables, images). We propose DataMosaic, a framework designed to make LLM-powered analytics both explainable and verifiable. By dynamically extracting task-specific structures (for example, tables, graphs, trees) from raw data, DataMosaic provides transparent, step-by-step reasoning traces and enables validation of intermediate results. Built on a multi-agent framework, DataMosaic orchestrates self-adaptive agents that align with downstream task requirements, enhancing consistency, completeness, and privacy. Through this approach, DataMosaic not only tackles the limitations of current LLM-powered analytics systems but also lays the groundwork for a new paradigm of grounded, accurate, and explainable multi-modal data analytics.
Abstract:The integration of heterogeneous databases into a unified querying framework remains a critical challenge, particularly in resource-constrained environments. This paper presents a novel Small Language Model(SLM)-driven system that synergizes advancements in lightweight Retrieval-Augmented Generation (RAG) and semantic-aware data structuring to enable efficient, accurate, and scalable query resolution across diverse data formats. By integrating MiniRAG's semantic-aware heterogeneous graph indexing and topology-enhanced retrieval with SLM-powered structured data extraction, our system addresses the limitations of traditional methods in handling Multi-Entity Question Answering (Multi-Entity QA) and complex semantic queries. Experimental results demonstrate superior performance in accuracy and efficiency, while the introduction of semantic entropy as an unsupervised evaluation metric provides robust insights into model uncertainty. This work pioneers a cost-effective, domain-agnostic solution for next-generation database systems.
Abstract:Multi-entity question answering (MEQA) poses significant challenges for large language models (LLMs), which often struggle to consolidate scattered information across multiple documents. An example question might be "What is the distribution of IEEE Fellows among various fields of study?", which requires retrieving information from diverse sources e.g., Wikipedia pages. The effectiveness of current retrieval-augmented generation (RAG) methods is limited by the LLMs' capacity to aggregate insights from numerous pages. To address this gap, this paper introduces a structured RAG (SRAG) framework that systematically organizes extracted entities into relational tables (e.g., tabulating entities with schema columns like "name" and "field of study") and then apply table-based reasoning techniques. Our approach decouples retrieval and reasoning, enabling LLMs to focus on structured data analysis rather than raw text aggregation. Extensive experiments on Wikipedia-based multi-entity QA tasks demonstrate that SRAG significantly outperforms state-of-the-art long-context LLMs and RAG solutions, achieving a 29.6% improvement in accuracy. The results underscore the efficacy of structuring unstructured data to enhance LLMs' reasoning capabilities.
Abstract:Multi-entity question answering (MEQA) represents significant challenges for large language models (LLM) and retrieval-augmented generation (RAG) systems, which frequently struggle to consolidate scattered information across diverse documents. While existing methods excel at single-document comprehension, they often struggle with cross-document aggregation, particularly when resolving entity-dense questions like "What is the distribution of ACM Fellows among various fields of study?", which require integrating entity-centric insights from heterogeneous sources (e.g., Wikipedia pages). To address this gap, we introduce MEBench, a novel multi-document, multi-entity benchmark designed to systematically evaluate LLMs' capacity to retrieve, consolidate, and reason over fragmented information. Our benchmark comprises 4,780 questions which are systematically categorized into three primary categories, further divided into eight distinct types, ensuring broad coverage of real-world multi-entity reasoning scenarios. Our experiments on state-of-the-art LLMs (e.g., GPT-4, Llama-3) and RAG pipelines reveal critical limitations: even advanced models achieve only 59% accuracy on MEBench. Our benchmark emphasizes the importance of completeness and factual precision of information extraction in MEQA tasks, using Entity-Attributed F1 (EA-F1) metric for granular evaluation of entity-level correctness and attribution validity. MEBench not only highlights systemic weaknesses in current LLM frameworks but also provides a foundation for advancing robust, entity-aware QA architectures.