Abstract:Visual Question Answering (VQA) focuses on providing answers to natural language questions by utilizing information from images. Although cutting-edge multimodal large language models (MLLMs) such as GPT-4o achieve strong performance on VQA tasks, they frequently fall short in accessing domain-specific or the latest knowledge. To mitigate this issue, retrieval-augmented generation (RAG) leveraging external knowledge bases (KBs), referred to as KB-VQA, emerges as a promising approach. Nevertheless, conventional unimodal retrieval techniques, which translate images into textual descriptions, often result in the loss of critical visual details. This study presents fine-grained knowledge units, which merge textual snippets with entity images stored in vector databases. Furthermore, we introduce a knowledge unit retrieval-augmented generation framework (KU-RAG) that integrates fine-grained retrieval with MLLMs. The proposed KU-RAG framework ensures precise retrieval of relevant knowledge and enhances reasoning capabilities through a knowledge correction chain. Experimental findings demonstrate that our approach significantly boosts the performance of leading KB-VQA methods, achieving improvements of up to 10%.
Abstract:Retrieval-Augmented Generation (RAG) is a popular approach for enhancing Large Language Models (LLMs) by addressing their limitations in verifying facts and answering knowledge-intensive questions. As the research in LLM extends their capability to handle input modality other than text, e.g. image, several multimodal RAG benchmarks are proposed. Nonetheless, they mainly use textual knowledge bases as the primary source of evidences for augmentation. There still lack benchmarks designed to evaluate images as augmentation in RAG systems and how they leverage visual knowledge. We propose Visual-RAG, a novel Question Answering benchmark that emphasizes visual knowledge intensive questions. Unlike prior works relying on text-based evidence, Visual-RAG necessitates text-to-image retrieval and integration of relevant clue images to extract visual knowledge as evidence. With Visual-RAG, we evaluate 5 open-sourced and 3 proprietary Multimodal LLMs (MLLMs), revealing that images can serve as good evidence in RAG; however, even the SoTA models struggle with effectively extracting and utilizing visual knowledge
Abstract:In-context Learning (ICL) has emerged as a powerful capability alongside the development of scaled-up large language models (LLMs). By instructing LLMs using few-shot demonstrative examples, ICL enables them to perform a wide range of tasks without updating millions of parameters. However, the precise contributions of demonstrations towards improving end-task performance have not been thoroughly investigated in recent analytical studies. In this paper, we empirically decompose the overall performance of ICL into three dimensions, label space, format, and discrimination, and we evaluate four general-purpose LLMs across a diverse range of tasks. Counter-intuitively, we find that the demonstrations have a marginal impact on provoking discriminative knowledge of language models. However, ICL exhibits significant efficacy in regulating the label space and format which helps LLMs to respond in desired label words. We then demonstrate this ability functions similar to detailed instructions for LLMs to follow. We additionally provide an in-depth analysis of the mechanism of retrieval helping with ICL and find that retrieving the most semantically similar examples notably boosts model's discriminative capability.