Abstract:This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.
Abstract:Estimating accurate and well-calibrated predictive uncertainty is important for enhancing the reliability of computer vision models, especially in safety-critical applications like traffic scene perception. While ensemble methods are commonly used to quantify uncertainty by combining multiple models, a mixture of experts (MoE) offers an efficient alternative by leveraging a gating network to dynamically weight expert predictions based on the input. Building on the promising use of MoEs for semantic segmentation in our previous works, we show that well-calibrated predictive uncertainty estimates can be extracted from MoEs without architectural modifications. We investigate three methods to extract predictive uncertainty estimates: predictive entropy, mutual information, and expert variance. We evaluate these methods for an MoE with two experts trained on a semantical split of the A2D2 dataset. Our results show that MoEs yield more reliable uncertainty estimates than ensembles in terms of conditional correctness metrics under out-of-distribution (OOD) data. Additionally, we evaluate routing uncertainty computed via gate entropy and find that simple gating mechanisms lead to better calibration of routing uncertainty estimates than more complex classwise gates. Finally, our experiments on the Cityscapes dataset suggest that increasing the number of experts can further enhance uncertainty calibration. Our code is available at https://github.com/KASTEL-MobilityLab/mixtures-of-experts/.
Abstract:Robustifying convolutional neural networks (CNNs) against adversarial attacks remains challenging and often requires resource-intensive countermeasures. We explore the use of sparse mixture-of-experts (MoE) layers to improve robustness by replacing selected residual blocks or convolutional layers, thereby increasing model capacity without additional inference cost. On ResNet architectures trained on CIFAR-100, we find that inserting a single MoE layer in the deeper stages leads to consistent improvements in robustness under PGD and AutoPGD attacks when combined with adversarial training. Furthermore, we discover that when switch loss is used for balancing, it causes routing to collapse onto a small set of overused experts, thereby concentrating adversarial training on these paths and inadvertently making them more robust. As a result, some individual experts outperform the gated MoE model in robustness, suggesting that robust subpaths emerge through specialization. Our code is available at https://github.com/KASTEL-MobilityLab/robust-sparse-moes.
Abstract:In the future, mobility will be strongly shaped by the increasing use of digitalization. Not only will individual road users be highly interconnected, but also the road and associated infrastructure. At that point, a Digital Twin becomes particularly appealing because, unlike a basic simulation, it offers a continuous, bilateral connection linking the real and virtual environments. This paper describes the digital reconstruction used to develop the Digital Twin of the Test Area Autonomous Driving-Baden-W\"urttemberg (TAF-BW), Germany. The TAF-BW offers a variety of different road sections, from high-traffic urban intersections and tunnels to multilane motorways. The test area is equipped with a comprehensive Vehicle-to-Everything (V2X) communication infrastructure and multiple intelligent intersections equipped with camera sensors to facilitate real-time traffic flow monitoring. The generation of authentic data as input for the Digital Twin was achieved by extracting object lists at the intersections. This process was facilitated by the combined utilization of camera images from the intelligent infrastructure and LiDAR sensors mounted on a test vehicle. Using a unified interface, recordings from real-world detections of traffic participants can be resimulated. Additionally, the simulation framework's design and the reconstruction process is discussed. The resulting framework is made publicly available for download and utilization at: https://digit4taf-bw.fzi.de The demonstration uses two case studies to illustrate the application of the digital twin and its interfaces: the analysis of traffic signal systems to optimize traffic flow and the simulation of security-related scenarios in the communications sector.
Abstract:Realistic adversarial attacks on various camera-based perception tasks of autonomous vehicles have been successfully demonstrated so far. However, only a few works considered attacks on traffic light detectors. This work shows how CNNs for traffic light detection can be attacked with printed patches. We propose a threat model, where each instance of a traffic light is attacked with a patch placed under it, and describe a training strategy. We demonstrate successful adversarial patch attacks in universal settings. Our experiments show realistic targeted red-to-green label-flipping attacks and attacks on pictogram classification. Finally, we perform a real-world evaluation with printed patches and demonstrate attacks in the lab settings with a mobile traffic light for construction sites and in a test area with stationary traffic lights. Our code is available at https://github.com/KASTEL-MobilityLab/attacks-on-traffic-light-detection.
Abstract:This paper addresses the challenges of training end-to-end autonomous driving agents using Reinforcement Learning (RL). RL agents are typically trained in a fixed set of scenarios and nominal behavior of surrounding road users in simulations, limiting their generalization and real-life deployment. While domain randomization offers a potential solution by randomly sampling driving scenarios, it frequently results in inefficient training and sub-optimal policies due to the high variance among training scenarios. To address these limitations, we propose an automatic curriculum learning framework that dynamically generates driving scenarios with adaptive complexity based on the agent's evolving capabilities. Unlike manually designed curricula that introduce expert bias and lack scalability, our framework incorporates a ``teacher'' that automatically generates and mutates driving scenarios based on their learning potential -- an agent-centric metric derived from the agent's current policy -- eliminating the need for expert design. The framework enhances training efficiency by excluding scenarios the agent has mastered or finds too challenging. We evaluate our framework in a reinforcement learning setting where the agent learns a driving policy from camera images. Comparative results against baseline methods, including fixed scenario training and domain randomization, demonstrate that our approach leads to enhanced generalization, achieving higher success rates: +9\% in low traffic density, +21\% in high traffic density, and faster convergence with fewer training steps. Our findings highlight the potential of ACL in improving the robustness and efficiency of RL-based autonomous driving agents.
Abstract:Reinforcement Learning (RL) is a promising approach for achieving autonomous driving due to robust decision-making capabilities. RL learns a driving policy through trial and error in traffic scenarios, guided by a reward function that combines the driving objectives. The design of such reward function has received insufficient attention, yielding ill-defined rewards with various pitfalls. Safety, in particular, has long been regarded only as a penalty for collisions. This leaves the risks associated with actions leading up to a collision unaddressed, limiting the applicability of RL in real-world scenarios. To address these shortcomings, our work focuses on enhancing the reward formulation by defining a set of driving objectives and structuring them hierarchically. Furthermore, we discuss the formulation of these objectives in a normalized manner to transparently determine their contribution to the overall reward. Additionally, we introduce a novel risk-aware objective for various driving interactions based on a two-dimensional ellipsoid function and an extension of Responsibility-Sensitive Safety (RSS) concepts. We evaluate the efficacy of our proposed reward in unsignalized intersection scenarios with varying traffic densities. The approach decreases collision rates by 21\% on average compared to baseline rewards and consistently surpasses them in route progress and cumulative reward, demonstrating its capability to promote safer driving behaviors while maintaining high-performance levels.
Abstract:Accurate prediction of surrounding road users' trajectories is essential for safe and efficient autonomous driving. While deep learning models have improved performance, challenges remain in preventing off-road predictions and ensuring kinematic feasibility. Existing methods incorporate road-awareness modules and enforce kinematic constraints but lack plausibility guarantees and often introduce trade-offs in complexity and flexibility. This paper proposes a novel framework that formulates trajectory prediction as a constrained regression guided by permissible driving directions and their boundaries. Using the agent's current state and an HD map, our approach defines the valid boundaries and ensures on-road predictions by training the network to learn superimposed paths between left and right boundary polylines. To guarantee feasibility, the model predicts acceleration profiles that determine the vehicle's travel distance along these paths while adhering to kinematic constraints. We evaluate our approach on the Argoverse-2 dataset against the HPTR baseline. Our approach shows a slight decrease in benchmark metrics compared to HPTR but notably improves final displacement error and eliminates infeasible trajectories. Moreover, the proposed approach has superior generalization to less prevalent maneuvers and unseen out-of-distribution scenarios, reducing the off-road rate under adversarial attacks from 66\% to just 1\%. These results highlight the effectiveness of our approach in generating feasible and robust predictions.
Abstract:Trajectory prediction is crucial for autonomous driving, enabling vehicles to navigate safely by anticipating the movements of surrounding road users. However, current deep learning models often lack trustworthiness as their predictions can be physically infeasible and illogical to humans. To make predictions more trustworthy, recent research has incorporated prior knowledge, like the social force model for modeling interactions and kinematic models for physical realism. However, these approaches focus on priors that suit either vehicles or pedestrians and do not generalize to traffic with mixed agent classes. We propose incorporating interaction and kinematic priors of all agent classes--vehicles, pedestrians, and cyclists with class-specific interaction layers to capture agent behavioral differences. To improve the interpretability of the agent interactions, we introduce DG-SFM, a rule-based interaction importance score that guides the interaction layer. To ensure physically feasible predictions, we proposed suitable kinematic models for all agent classes with a novel pedestrian kinematic model. We benchmark our approach on the Argoverse 2 dataset, using the state-of-the-art transformer HPTR as our baseline. Experiments demonstrate that our method improves interaction interpretability, revealing a correlation between incorrect predictions and divergence from our interaction prior. Even though incorporating the kinematic models causes a slight decrease in accuracy, they eliminate infeasible trajectories found in the dataset and the baseline model. Thus, our approach fosters trust in trajectory prediction as its interaction reasoning is interpretable, and its predictions adhere to physics.
Abstract:This paper introduces a centralized approach for fuel-efficient urban platooning by leveraging real-time Vehicle- to-Everything (V2X) communication and Signal Phase and Timing (SPaT) data. A nonlinear Model Predictive Control (MPC) algorithm optimizes the trajectories of platoon leader vehicles, employing an asymmetric cost function to minimize fuel-intensive acceleration. Following vehicles utilize a gap- and velocity-based control strategy, complemented by dynamic platoon splitting logic communicated through Platoon Control Messages (PCM) and Platoon Awareness Messages (PAM). Simulation results obtained from the CARLA environment demonstrate substantial fuel savings of up to 41.2%, along with smoother traffic flows, fewer vehicle stops, and improved intersection throughput.