Abstract:Vulnerability to adversarial attacks is a well-known deficiency of deep neural networks. Larger networks are generally more robust, and ensembling is one method to increase adversarial robustness: each model's weaknesses are compensated by the strengths of others. While an ensemble uses a deterministic rule to combine model outputs, a mixture of experts (MoE) includes an additional learnable gating component that predicts weights for the outputs of the expert models, thus determining their contributions to the final prediction. MoEs have been shown to outperform ensembles on specific tasks, yet their susceptibility to adversarial attacks has not been studied yet. In this work, we evaluate the adversarial vulnerability of MoEs for semantic segmentation of urban and highway traffic scenes. We show that MoEs are, in most cases, more robust to per-instance and universal white-box adversarial attacks and can better withstand transfer attacks. Our code is available at \url{https://github.com/KASTEL-MobilityLab/mixtures-of-experts/}.
Abstract:Adversarial attacks on traffic sign classification models were among the first successfully tried in the real world. Since then, the research in this area has been mainly restricted to repeating baseline models, such as LISA-CNN or GTSRB-CNN, and similar experiment settings, including white and black patches on traffic signs. In this work, we decouple model architectures from the datasets and evaluate on further generic models to make a fair comparison. Furthermore, we compare two attack settings, inconspicuous and visible, which are usually regarded without direct comparison. Our results show that standard baselines like LISA-CNN or GTSRB-CNN are significantly more susceptible than the generic ones. We, therefore, suggest evaluating new attacks on a broader spectrum of baselines in the future. Our code is available at \url{https://github.com/KASTEL-MobilityLab/attacks-on-traffic-sign-recognition/}.
Abstract:Effective traffic light detection is a critical component of the perception stack in autonomous vehicles. This work introduces a novel deep-learning detection system while addressing the challenges of previous work. Utilizing a comprehensive dataset amalgamation, including the Bosch Small Traffic Lights Dataset, LISA, the DriveU Traffic Light Dataset, and a proprietary dataset from Karlsruhe, we ensure a robust evaluation across varied scenarios. Furthermore, we propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation. On the DriveU dataset, this approach results in 96% accuracy in relevance estimation. Finally, a real-world evaluation is performed to evaluate the deployment and generalizing abilities of these models. For reproducibility and to facilitate further research, we provide the model weights and code: https://github.com/KASTEL-MobilityLab/traffic-light-detection.
Abstract:The growing concerns regarding energy consumption and privacy have prompted the development of AI solutions deployable on the edge, circumventing the substantial CO2 emissions associated with cloud servers and mitigating risks related to sharing sensitive data. But deploying Convolutional Neural Networks (CNNs) on non-off-the-shelf edge devices remains a complex and labor-intensive task. In this paper, we present and end-to-end workflow for deployment of CNNs on Field Programmable Gate Arrays (FPGAs) using the Gemmini accelerator, which we modified for efficient implementation on FPGAs. We describe how we leverage the use of open source software on each optimization step of the deployment process, the customizations we added to them and its impact on the final system's performance. We were able to achieve real-time performance by deploying a YOLOv7 model on a Xilinx ZCU102 FPGA with an energy efficiency of 36.5 GOP/s/W. Our FPGA-based solution demonstrates superior power efficiency compared with other embedded hardware devices, and even outperforms other FPGA reference implementations. Finally, we present how this kind of solution can be integrated into a wider system, by testing our proposed platform in a traffic monitoring scenario.
Abstract:In real-world autonomous driving, deep learning models can experience performance degradation due to distributional shifts between the training data and the driving conditions encountered. As is typical in machine learning, it is difficult to acquire a large and potentially representative labeled test set to validate models in preparation for deployment in the wild. In this work, we introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors. We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner and detect and classify model discrepancies subsequently. We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds, for an extensive quantitative analysis.
Abstract:Model compression and hardware acceleration are essential for the resource-efficient deployment of deep neural networks. Modern object detectors have highly interconnected convolutional layers with concatenations. In this work, we study how pruning can be applied to such architectures, exemplary for YOLOv7. We propose a method to handle concatenation layers, based on the connectivity graph of convolutional layers. By automating iterative sensitivity analysis, pruning, and subsequent model fine-tuning, we can significantly reduce model size both in terms of the number of parameters and FLOPs, while keeping comparable model accuracy. Finally, we deploy pruned models to FPGA and NVIDIA Jetson Xavier AGX. Pruned models demonstrate a 2x speedup for the convolutional layers in comparison to the unpruned counterparts and reach real-time capability with 14 FPS on FPGA. Our code is available at https://github.com/fzi-forschungszentrum-informatik/iterative-yolo-pruning.
Abstract:Understanding emotions and expressions is a task of interest across multiple disciplines, especially for improving user experiences. Contrary to the common perception, it has been shown that emotions are not discrete entities but instead exist along a continuum. People understand discrete emotions differently due to a variety of factors, including cultural background, individual experiences, and cognitive biases. Therefore, most approaches to expression understanding, particularly those relying on discrete categories, are inherently biased. In this paper, we present a comparative in-depth analysis of two common datasets (AffectNet and EMOTIC) equipped with the components of the circumplex model of affect. Further, we propose a model for the prediction of facial expressions tailored for lightweight applications. Using a small-scaled MaxViT-based model architecture, we evaluate the impact of discrete expression category labels in training with the continuous valence and arousal labels. We show that considering valence and arousal in addition to discrete category labels helps to significantly improve expression inference. The proposed model outperforms the current state-of-the-art models on AffectNet, establishing it as the best-performing model for inferring valence and arousal achieving a 7% lower RMSE. Training scripts and trained weights to reproduce our results can be found here: https://github.com/wagner-niklas/CAGE_expression_inference.
Abstract:Most automated driving functions are designed for a specific task or vehicle. Most often, the underlying architecture is fixed to specific algorithms to increase performance. Therefore, it is not possible to deploy new modules and algorithms easily. In this paper, we present our automated driving stack which combines both scalability and adaptability. Due to the modular design, our stack allows for a fast integration and testing of novel and state-of-the-art research approaches. Furthermore, it is flexible to be used for our different testing vehicles, including modified EasyMile EZ10 shuttles and different passenger cars. These vehicles differ in multiple ways, e.g. sensor setups, control systems, maximum speed, or steering angle limitations. Finally, our stack is deployed in real world environments, including passenger transport in urban areas. Our stack includes all components needed for operating an autonomous vehicle, including localization, perception, planning, controller, and additional safety modules. Our stack is developed, tested, and evaluated in real world traffic in multiple test sites, including the Test Area Autonomous Driving Baden-W\"urttemberg.
Abstract:Increasing the model capacity is a known approach to enhance the adversarial robustness of deep learning networks. On the other hand, various model compression techniques, including pruning and quantization, can reduce the size of the network while preserving its accuracy. Several recent studies have addressed the relationship between model compression and adversarial robustness, while some experiments have reported contradictory results. This work summarizes available evidence and discusses possible explanations for the observed effects.
Abstract:Anomalies in the domain of autonomous driving are a major hindrance to the large-scale deployment of autonomous vehicles. In this work, we focus on high-resolution camera data from urban scenes that include anomalies of various types and sizes. Based on a Variational Autoencoder, we condition its latent space to classify samples as either normal data or anomalies. In order to emphasize especially small anomalies, we perform experiments where we provide the VAE with a discrepancy map as an additional input, evaluating its impact on the detection performance. Our method separates normal data and anomalies into isolated clusters while still reconstructing high-quality images, leading to meaningful latent representations.