Abstract:Image-based diagnostic decision support systems (DDSS) utilizing deep learning have the potential to optimize clinical workflows. However, developing DDSS requires extensive datasets with expert annotations and is therefore costly. Leveraging report contents from radiological data bases with Natural Language Processing to annotate the corresponding image data promises to replace labor-intensive manual annotation. As mining "real world" databases can introduce label noise, noise-robust training losses are of great interest. However, current noise-robust losses do not consider noise estimations that can for example be derived based on the performance of the automatic label generator used. In this study, we expand the noise-robust Deep Abstaining Classifier (DAC) loss to an Informed Deep Abstaining Classifier (IDAC) loss by incorporating noise level estimations during training. Our findings demonstrate that IDAC enhances the noise robustness compared to DAC and several state-of-the-art loss functions. The results are obtained on various simulated noise levels using a public chest X-ray data set. These findings are reproduced on an in-house noisy data set, where labels were extracted from the clinical systems of the University Hospital Bonn by a text-based transformer. The IDAC can therefore be a valuable tool for researchers, companies or clinics aiming to develop accurate and reliable DDSS from routine clinical data.
Abstract:Understanding emotions and expressions is a task of interest across multiple disciplines, especially for improving user experiences. Contrary to the common perception, it has been shown that emotions are not discrete entities but instead exist along a continuum. People understand discrete emotions differently due to a variety of factors, including cultural background, individual experiences, and cognitive biases. Therefore, most approaches to expression understanding, particularly those relying on discrete categories, are inherently biased. In this paper, we present a comparative in-depth analysis of two common datasets (AffectNet and EMOTIC) equipped with the components of the circumplex model of affect. Further, we propose a model for the prediction of facial expressions tailored for lightweight applications. Using a small-scaled MaxViT-based model architecture, we evaluate the impact of discrete expression category labels in training with the continuous valence and arousal labels. We show that considering valence and arousal in addition to discrete category labels helps to significantly improve expression inference. The proposed model outperforms the current state-of-the-art models on AffectNet, establishing it as the best-performing model for inferring valence and arousal achieving a 7% lower RMSE. Training scripts and trained weights to reproduce our results can be found here: https://github.com/wagner-niklas/CAGE_expression_inference.
Abstract:Most automated driving functions are designed for a specific task or vehicle. Most often, the underlying architecture is fixed to specific algorithms to increase performance. Therefore, it is not possible to deploy new modules and algorithms easily. In this paper, we present our automated driving stack which combines both scalability and adaptability. Due to the modular design, our stack allows for a fast integration and testing of novel and state-of-the-art research approaches. Furthermore, it is flexible to be used for our different testing vehicles, including modified EasyMile EZ10 shuttles and different passenger cars. These vehicles differ in multiple ways, e.g. sensor setups, control systems, maximum speed, or steering angle limitations. Finally, our stack is deployed in real world environments, including passenger transport in urban areas. Our stack includes all components needed for operating an autonomous vehicle, including localization, perception, planning, controller, and additional safety modules. Our stack is developed, tested, and evaluated in real world traffic in multiple test sites, including the Test Area Autonomous Driving Baden-W\"urttemberg.
Abstract:Chest X-Ray imaging is one of the most common radiological tools for detection of various pathologies related to the chest area and lung function. In a clinical setting, automated assessment of chest radiographs has the potential of assisting physicians in their decision making process and optimize clinical workflows, for example by prioritizing emergency patients. Most work analyzing the potential of machine learning models to classify chest X-ray images focuses on vision methods processing and predicting pathologies for one image at a time. However, many patients undergo such a procedure multiple times during course of a treatment or during a single hospital stay. The patient history, that is previous images and especially the corresponding diagnosis contain useful information that can aid a classification system in its prediction. In this study, we analyze how information about diagnosis can improve CNN-based image classification models by constructing a novel dataset from the well studied CheXpert dataset of chest X-rays. We show that a model trained on additional patient history information outperforms a model trained without the information by a significant margin. We provide code to replicate the dataset creation and model training.
Abstract:We explore the merits of training of support vector machines for binary classification by means of solving systems of ordinary differential equations. We thus assume a continuous time perspective on a machine learning problem which may be of interest for implementations on (re)emerging hardware platforms such as analog- or quantum computers.