Abstract:Image-based diagnostic decision support systems (DDSS) utilizing deep learning have the potential to optimize clinical workflows. However, developing DDSS requires extensive datasets with expert annotations and is therefore costly. Leveraging report contents from radiological data bases with Natural Language Processing to annotate the corresponding image data promises to replace labor-intensive manual annotation. As mining "real world" databases can introduce label noise, noise-robust training losses are of great interest. However, current noise-robust losses do not consider noise estimations that can for example be derived based on the performance of the automatic label generator used. In this study, we expand the noise-robust Deep Abstaining Classifier (DAC) loss to an Informed Deep Abstaining Classifier (IDAC) loss by incorporating noise level estimations during training. Our findings demonstrate that IDAC enhances the noise robustness compared to DAC and several state-of-the-art loss functions. The results are obtained on various simulated noise levels using a public chest X-ray data set. These findings are reproduced on an in-house noisy data set, where labels were extracted from the clinical systems of the University Hospital Bonn by a text-based transformer. The IDAC can therefore be a valuable tool for researchers, companies or clinics aiming to develop accurate and reliable DDSS from routine clinical data.
Abstract:Depression is characterized by persistent sadness and loss of interest, significantly impairing daily functioning and now a widespread mental disorder. Traditional diagnostic methods rely on subjective assessments, necessitating objective approaches for accurate diagnosis. Our study investigates the use of facial action units (AUs) and emotions as biomarkers for depression. We analyzed facial expressions from video data of participants classified with or without depression. Our methodology involved detailed feature extraction, mean intensity comparisons of key AUs, and the application of time series classification models. Furthermore, we employed Principal Component Analysis (PCA) and various clustering algorithms to explore the variability in emotional expression patterns. Results indicate significant differences in the intensities of AUs associated with sadness and happiness between the groups, highlighting the potential of facial analysis in depression assessment.
Abstract:Process of information extraction (IE) is often used to extract meaningful information from unstructured and unlabeled data. Conventional methods of data extraction including application of OCR and passing extraction engine, are inefficient on large data and have their limitation. In this paper, a peculiar technique of information extraction is proposed using A2I and computer vision technologies, which also includes NLP.
Abstract:In this project we have designed and described a model which colourize a gray-scale image, with no human intervention. We propose a fully automatic process of colouring and re-colouring faded or gray-scale image with vibrant and pragmatic colours. We have used Convolutional Neural Network to hallucinate input images and feed-forwarded by training thousands of images. This approach results in trailblazing results.