Large Language Models (LLMs) are transforming data analytics, but their widespread adoption is hindered by two critical limitations: they are not explainable (opaque reasoning processes) and not verifiable (prone to hallucinations and unchecked errors). While retrieval-augmented generation (RAG) improves accuracy by grounding LLMs in external data, it fails to address the core challenges of trustworthy analytics - especially when processing noisy, inconsistent, or multi-modal data (for example, text, tables, images). We propose DataMosaic, a framework designed to make LLM-powered analytics both explainable and verifiable. By dynamically extracting task-specific structures (for example, tables, graphs, trees) from raw data, DataMosaic provides transparent, step-by-step reasoning traces and enables validation of intermediate results. Built on a multi-agent framework, DataMosaic orchestrates self-adaptive agents that align with downstream task requirements, enhancing consistency, completeness, and privacy. Through this approach, DataMosaic not only tackles the limitations of current LLM-powered analytics systems but also lays the groundwork for a new paradigm of grounded, accurate, and explainable multi-modal data analytics.