Abstract:The perception module of self-driving vehicles relies on a multi-sensor system to understand its environment. Recent advancements in deep learning have led to the rapid development of approaches that integrate multi-sensory measurements to enhance perception capabilities. This paper surveys the latest deep learning integration techniques applied to the perception module in autonomous driving systems, categorizing integration approaches based on "what, how, and when to integrate." A new taxonomy of integration is proposed, based on three dimensions: multi-view, multi-modality, and multi-frame. The integration operations and their pros and cons are summarized, providing new insights into the properties of an "ideal" data integration approach that can alleviate the limitations of existing methods. After reviewing hundreds of relevant papers, this survey concludes with a discussion of the key features of an optimal data integration approach.
Abstract:Data is a central component of machine learning and causal inference tasks. The availability of large amounts of data from sources such as open data repositories, data lakes and data marketplaces creates an opportunity to augment data and boost those tasks' performance. However, augmentation techniques rely on a user manually discovering and shortlisting useful candidate augmentations. Existing solutions do not leverage the synergy between discovery and augmentation, thus under exploiting data. In this paper, we introduce METAM, a novel goal-oriented framework that queries the downstream task with a candidate dataset, forming a feedback loop that automatically steers the discovery and augmentation process. To select candidates efficiently, METAM leverages properties of the: i) data, ii) utility function, and iii) solution set size. We show METAM's theoretical guarantees and demonstrate those empirically on a broad set of tasks. All in all, we demonstrate the promise of goal-oriented data discovery to modern data science applications.