Multiple Instance Learning


Multiple instance learning is a machine learning paradigm where training data is organized into bags of instances.

GNN-ViTCap: GNN-Enhanced Multiple Instance Learning with Vision Transformers for Whole Slide Image Classification and Captioning

Add code
Jul 09, 2025
Viaarxiv icon

EXAONE Path 2.0: Pathology Foundation Model with End-to-End Supervision

Add code
Jul 09, 2025
Viaarxiv icon

A Principled Framework for Multi-View Contrastive Learning

Add code
Jul 09, 2025
Viaarxiv icon

Divergence-Based Similarity Function for Multi-View Contrastive Learning

Add code
Jul 09, 2025
Viaarxiv icon

FedDifRC: Unlocking the Potential of Text-to-Image Diffusion Models in Heterogeneous Federated Learning

Add code
Jul 09, 2025
Viaarxiv icon

Continual Multiple Instance Learning with Enhanced Localization for Histopathological Whole Slide Image Analysis

Add code
Jul 03, 2025
Viaarxiv icon

Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound

Add code
Jul 02, 2025
Viaarxiv icon

The Gauss-Markov Adjunction: Categorical Semantics of Residuals in Supervised Learning

Add code
Jul 03, 2025
Viaarxiv icon

OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport

Add code
Jun 25, 2025
Viaarxiv icon

Mastering Multiple-Expert Routing: Realizable $H$-Consistency and Strong Guarantees for Learning to Defer

Add code
Jun 25, 2025
Viaarxiv icon