Multiple Instance Learning


Multiple instance learning is a machine learning paradigm where training data is organized into bags of instances.

ExpAlign: Expectation-Guided Vision-Language Alignment for Open-Vocabulary Grounding

Add code
Jan 30, 2026
Viaarxiv icon

Hypernetwork-Based Adaptive Aggregation for Multimodal Multiple-Instance Learning in Predicting Coronary Calcium Debulking

Add code
Jan 29, 2026
Viaarxiv icon

One-shot Optimized Steering Vector for Hallucination Mitigation for VLMs

Add code
Jan 30, 2026
Viaarxiv icon

AI-based Prediction of Biochemical Recurrence from Biopsy and Prostatectomy Samples

Add code
Jan 28, 2026
Viaarxiv icon

OptiMAG: Structure-Semantic Alignment via Unbalanced Optimal Transport

Add code
Jan 30, 2026
Viaarxiv icon

FedCARE: Federated Unlearning with Conflict-Aware Projection and Relearning-Resistant Recovery

Add code
Jan 30, 2026
Viaarxiv icon

Dynamic Welfare-Maximizing Pooled Testing

Add code
Jan 30, 2026
Viaarxiv icon

Partial Feedback Online Learning

Add code
Jan 29, 2026
Viaarxiv icon

PRISM: Distribution-free Adaptive Computation of Matrix Functions for Accelerating Neural Network Training

Add code
Jan 29, 2026
Viaarxiv icon

DAJ: Data-Reweighted LLM Judge for Test-Time Scaling in Code Generation

Add code
Jan 29, 2026
Viaarxiv icon