Multiple instance learning is a machine learning paradigm where training data is organized into bags of instances.
Open-vocabulary grounding requires accurate vision-language alignment under weak supervision, yet existing methods either rely on global sentence embeddings that lack fine-grained expressiveness or introduce token-level alignment with explicit supervision or heavy cross-attention designs. We propose ExpAlign, a theoretically grounded vision-language alignment framework built on a principled multiple instance learning formulation. ExpAlign introduces an Expectation Alignment Head that performs attention-based soft MIL pooling over token-region similarities, enabling implicit token and instance selection without additional annotations. To further stabilize alignment learning, we develop an energy-based multi-scale consistency regularization scheme, including a Top-K multi-positive contrastive objective and a Geometry-Aware Consistency Objective derived from a Lagrangian-constrained free-energy minimization. Extensive experiments show that ExpAlign consistently improves open-vocabulary detection and zero-shot instance segmentation, particularly on long-tail categories. Most notably, it achieves 36.2 AP$_r$ on the LVIS minival split, outperforming other state-of-the-art methods at comparable model scale, while remaining lightweight and inference-efficient.
In this paper, we present the first attempt to estimate the necessity of debulking coronary artery calcifications from computed tomography (CT) images. We formulate this task as a Multiple-instance Learning (MIL) problem. The difficulty of this task lies in that physicians adjust their focus and decision criteria for device usage according to tabular data representing each patient's condition. To address this issue, we propose a hypernetwork-based adaptive aggregation transformer (HyperAdAgFormer), which adaptively modifies the feature aggregation strategy for each patient based on tabular data through a hypernetwork. The experiments using the clinical dataset demonstrated the effectiveness of HyperAdAgFormer. The code is publicly available at https://github.com/Shiku-Kaito/HyperAdAgFormer.
Vision Language Models (VLMs) achieve strong performance on multimodal tasks but still suffer from hallucination and safety-related failures that persist even at scale. Steering offers a lightweight technique to improve model performance. However, steering, whether input-dependent or input-independent, achieves a meaningful trade-off between efficiency and effectiveness. In this work, we observe that steering vectors can generalize across inputs when tasks share aligned semantic intent. Based on this insight, we propose \textbf{OSGA} (\textbf{O}ne-shot \textbf{S}teering with \textbf{G}enerative \textbf{A}nchor), an input-independent framework that improves model performance with a single optimization instance. OSGA first selects an informative sample via a variance-based data selection strategy and learns a single steering vector with a contrastive objective with generative anchor regularization. The resulting vector can be universally applied at a certain layer during inference time without modifying model parameters. Experiments across multiple benchmarks show that a single OSGA-optimized steering vector consistently improves hallucination mitigation and safety enhancement with negligible overhead, highlighting one-shot steering as a practical and scalable solution for reliable VLMs.
Biochemical recurrence (BCR) after radical prostatectomy (RP) is a surrogate marker for aggressive prostate cancer with adverse outcomes, yet current prognostic tools remain imprecise. We trained an AI-based model on diagnostic prostate biopsy slides from the STHLM3 cohort (n = 676) to predict patient-specific risk of BCR, using foundation models and attention-based multiple instance learning. Generalizability was assessed across three external RP cohorts: LEOPARD (n = 508), CHIMERA (n = 95), and TCGA-PRAD (n = 379). The image-based approach achieved 5-year time-dependent AUCs of 0.64, 0.70, and 0.70, respectively. Integrating clinical variables added complementary prognostic value and enabled statistically significant risk stratification. Compared with guideline-based CAPRA-S, AI incrementally improved postoperative prognostication. These findings suggest biopsy-trained histopathology AI can generalize across specimen types to support preoperative and postoperative decision making, but the added value of AI-based multimodal approaches over simpler predictive models should be critically scrutinized in further studies.
Multimodal Attributed Graphs (MAGs) have been widely adopted for modeling complex systems by integrating multi-modal information, such as text and images, on nodes. However, we identify a discrepancy between the implicit semantic structure induced by different modality embeddings and the explicit graph structure. For instance, neighbors in the explicit graph structure may be close in one modality but distant in another. Since existing methods typically perform message passing over the fixed explicit graph structure, they inadvertently aggregate dissimilar features, introducing modality-specific noise and impeding effective node representation learning. To address this, we propose OptiMAG, an Unbalanced Optimal Transport-based regularization framework. OptiMAG employs the Fused Gromov-Wasserstein distance to explicitly guide cross-modal structural consistency within local neighborhoods, effectively mitigating structural-semantic conflicts. Moreover, a KL divergence penalty enables adaptive handling of cross-modal inconsistencies. This framework can be seamlessly integrated into existing multimodal graph models, acting as an effective drop-in regularizer. Experiments demonstrate that OptiMAG consistently outperforms baselines across multiple tasks, ranging from graph-centric tasks (e.g., node classification, link prediction) to multimodal-centric generation tasks (e.g., graph2text, graph2image). The source code will be available upon acceptance.
Federated learning (FL) enables collaborative model training without centralizing raw data, but privacy regulations such as the right to be forgotten require FL systems to remove the influence of previously used training data upon request. Retraining a federated model from scratch is prohibitively expensive, motivating federated unlearning (FU). However, existing FU methods suffer from high unlearning overhead, utility degradation caused by entangled knowledge, and unintended relearning during post-unlearning recovery. In this paper, we propose FedCARE, a unified and low overhead FU framework that enables conflict-aware unlearning and relearning-resistant recovery. FedCARE leverages gradient ascent for efficient forgetting when target data are locally available and employs data free model inversion to construct class level proxies of shared knowledge. Based on these insights, FedCARE integrates a pseudo-sample generator, conflict-aware projected gradient ascent for utility preserving unlearning, and a recovery strategy that suppresses rollback toward the pre-unlearning model. FedCARE supports client, instance, and class level unlearning with modest overhead. Extensive experiments on multiple datasets and model architectures under both IID and non-IID settings show that FedCARE achieves effective forgetting, improved utility retention, and reduced relearning risk compared to state of the art FU baselines.
Pooled testing is a common strategy for public health disease screening under limited testing resources, allowing multiple biological samples to be tested together with the resources of a single test, at the cost of reduced individual resolution. While dynamic and adaptive strategies have been extensively studied in the classical pooled testing literature, where the goal is to minimize the number of tests required for full diagnosis of a given population, much of the existing work on welfare-maximizing pooled testing adopts static formulations in which all tests are assigned in advance. In this paper, we study dynamic welfare-maximizing pooled testing strategies in which a limited number of tests are performed sequentially to maximize social welfare, defined as the aggregate utility of individuals who are confirmed to be healthy. We formally define the dynamic problem and study algorithmic approaches for sequential test assignment. Because exact dynamic optimization is computationally infeasible beyond small instances, we evaluate a range of strategies (including exact optimization baselines, greedy heuristics, mixed-integer programming relaxations, and learning-based policies) and empirically characterize their performance and tradeoffs using synthetic experiments. Our results show that dynamic testing can yield substantial welfare improvements over static baselines in low-budget regimes. We find that much of the benefit of dynamic testing is captured by simple greedy policies, which substantially outperform static approaches while remaining computationally efficient. Learning-based methods are included as flexible baselines, but in our experiments they do not reliably improve upon these heuristics. Overall, this work provides a principled computational perspective on dynamic pooled testing and clarifies when dynamic assignment meaningfully improves welfare in public health screening.
We study partial-feedback online learning, where each instance admits a set of correct labels, but the learner only observes one correct label per round; any prediction within the correct set is counted as correct. This model captures settings such as language generation, where multiple responses may be valid but data provide only a single reference. We give a near-complete characterization of minimax regret for both deterministic and randomized learners in the set-realizable regime, i.e., in the regime where sublinear regret is generally attainable. For deterministic learners, we introduce the Partial-Feedback Littlestone dimension (PFLdim) and show it precisely governs learnability and minimax regret; technically, PFLdim cannot be defined via the standard version space, requiring a new collection version space viewpoint and an auxiliary dimension used only in the proof. We further develop the Partial-Feedback Measure Shattering dimension (PMSdim) to obtain tight bounds for randomized learners. We identify broad conditions ensuring inseparability between deterministic and randomized learnability (e.g., finite Helly number or nested-inclusion label structure), and extend the argument to set-valued online learning, resolving an open question of Raman et al. [2024b]. Finally, we show a sharp separation from weaker realistic and agnostic variants: outside set realizability, the problem can become information-theoretically intractable, with linear regret possible even for $|H|=2$. This highlights the need for fundamentally new, noise-sensitive complexity measures to meaningfully characterize learnability beyond set realizability.
Matrix functions such as square root, inverse roots, and orthogonalization play a central role in preconditioned gradient methods for neural network training. This has motivated the development of iterative algorithms that avoid explicit eigendecompositions and rely primarily on matrix multiplications, making them well suited for modern GPU accelerators. We present PRISM (Polynomial-fitting and Randomized Iterative Sketching for Matrix functions computation), a general framework for accelerating iterative algorithms for computing matrix functions. PRISM combines adaptive polynomial approximation with randomized sketching: at each iteration, it fits a polynomial surrogate to the current spectrum via a sketched least-squares problem, adapting to the instance at hand with minimal overhead. We apply PRISM to accelerate Newton-Schulz-like iterations for matrix square roots and orthogonalization, which are core primitives in machine learning. Unlike prior methods, PRISM requires no explicit spectral bounds or singular value estimates; and it adapts automatically to the evolving spectrum. Empirically, PRISM accelerates training when integrated into Shampoo and Muon optimizers.
Test-time scaling for code generation commonly relies on Best-of-N selection, in which multiple candidate solutions are sampled from a base model, and the best one is selected by an LLM judge. However, training reliable LLM judges is challenging due to severe distribution shifts, including imbalances between easy and hard problems, mismatches between training tasks and evaluation benchmarks, and trajectory mismatch arising from training data generated by cheaper models whose behavior differs from that of inference-time models. We propose DAJ, a reasoning-based LLM judge trained with verifiable rewards under a bi-level data-reweighted learning framework. The proposed framework learns data-importance weights (either domain-level or instance-level) to optimize generalization performance on a held-out meta set aligned with target benchmarks. To the best of our knowledge, this is the first application of data reweighting to LLM-as-a-Judge training for test-time scaling. Our approach automatically emphasizes hard problems, in-distribution samples, and trajectory-aligned data, without relying on hand-crafted heuristics. Empirically, DAJ achieves state-of-the-art performance on LiveCodeBench and BigCodeBench, outperforming strong test-time scaling baselines as well as leading proprietary models.